In the development of Li-ion batteries(LIBs)with high energy/power density,long cycle-life,fast charging,and high safety,an insight into charge transfer reactions is required.Although electrochemical impedance spectro...In the development of Li-ion batteries(LIBs)with high energy/power density,long cycle-life,fast charging,and high safety,an insight into charge transfer reactions is required.Although electrochemical impedance spectroscopy(EIS)is regarded as a powerful diagnosis tool,it is not a direct but an indirect measurement.With respect to this,some critical questions need to be answered:(i)why EIS can reflect the kinetics of charge transfer reactions;(ii)what the inherent logical relationship between impedance models under different physical scenes is;(iii)how charge transfer reactions compete with each other at multiple scales.This work aims at answering these questions via developing a theory framework so as to mitigate the blindness and uncertainty in unveiling charge transfer reactions in LIBs.To systematically answer the above questions,this article is organized into a three-in-one(review,tutorial,and research)type and the following contributions are made:(i)a brief review is given for impedance model development of the LIBs over the past half century;(ii)an open source code toolbox is developed based on the unified impedance model;(iii)the competive mechanisms of charge transfer reactions are unveiled based on the developed EIS-Toolbox@LIB.This work not only clarifies theoretical fundamentals,but also provides an easy-to-use open source code for EIS-Toolbox@LIB to optimize fast charge/discharge,mitigate cycle aging,and improve energy/power density.展开更多
We systematically calculated the multinucleon transfer reactions of ^(208)Os,^(208)Pt,^(208)Hg,^(208)Pb,^(208)Po,^(208)Rn,^(208)Ra,and ^(132,136) Xe when bombarded on ^(232) Th and ^(248) Cm at Coulomb barrier energie...We systematically calculated the multinucleon transfer reactions of ^(208)Os,^(208)Pt,^(208)Hg,^(208)Pb,^(208)Po,^(208)Rn,^(208)Ra,and ^(132,136) Xe when bombarded on ^(232) Th and ^(248) Cm at Coulomb barrier energies within the dinuclear system model.These results are in good agreement with the available experimental data.The influence of Coulomb and shell effects on actinide production in these reactions has been rigorously studied.We calculated and analyzed the potential energy surface (PES) and total kinetic energy (TKE) mass distributions for the reactions involving ^(208)Hg,^(208)Pb,and ^(208) Po with ^(248) Cm and ^(232)Th.The PES and TKE spectra shed light on the fragment formation mechanisms in multinucleon transfer reactions,with clear indications of isospin and shell effects.The production cross sections for multinucleon transfer products show a strong dependence on isobar projectiles with a mass number A=208.Isobar projectiles with high N/Z ratios are advantageous for generating neutron-rich target-like fragments.Conversely,products induced by isobar projectiles with larger charge numbers tend to shift toward proton-rich regions.The intertwining of the Coulomb potential and shell effect is evident in the production cross sections of actinide isotopes.Drawing from reactions induced by radioactive projectiles,we anticipate the discovery of several new actinide isotopes near the nuclear drip lines,extending our reach into the superheavy nuclei domain.展开更多
Mass transfer can tune the surface concentration of reactants and products and subsequently infl uence the catalytic perfor-mance.The morphology of nanomaterials plays an important role in the mass transfer of reactio...Mass transfer can tune the surface concentration of reactants and products and subsequently infl uence the catalytic perfor-mance.The morphology of nanomaterials plays an important role in the mass transfer of reaction microdomains,but related studies are lacking.Herein,a facile electrospinning technique utilizing cellulose was employed to fabricate a series of carbon nanofi bers with diff erent diameters,which exhibited excellent electrochemical nitrate reduction reaction and oxygen evolu-tion reaction activities.Furthermore,the microstructure of electrocatalysts could infl uence the gas-liquid-solid interfacial mass transfer,resulting in diff erent electrochemical performances.展开更多
The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption...The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption energies of reaction intermediates,and ultimately impacts the catalytic performance.In this study,we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system.Specifically,electrons were transferred from the metal-based species to N-doped carbon,while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel.This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo_(2)C@nitrogen-doped carbon catalyst,with a half-wave potential of 0.91 V towards oxygen reduction reaction(ORR)and a low overpotential of 290 m V at 10 mA cm^(-2)towards oxygen evolution reaction(OER)under alkaline conditions.Additionally,the Fe-Ni/Mo_(2)C@carbon heterojunction catalyst demonstrated high specific capacity(794 mA h g_(Zn)~(-1))and excellent cycling stability(200 h)in a Zn-air battery.Theoretical calculations revealed that Mo_(2)C effectively inhibited charge transfer from Fe to the support,while secondary doping of Ni induced a charge transfer reversal,resulting in electron accumulation in the Fe-Ni alloy region.This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process,enhancing the catalytic efficiency of both ORR and OER.Consequently,our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes.展开更多
Multinucleon transfer in low-energy heavy-ion collisions is increasingly considered a promising approach for generating exotic nuclei.Understanding the complex mechanisms involved in multinucleon transfer processes pr...Multinucleon transfer in low-energy heavy-ion collisions is increasingly considered a promising approach for generating exotic nuclei.Understanding the complex mechanisms involved in multinucleon transfer processes presents significant challenges for the theoretical investigation of nuclear reactions.A Langevin equation model was developed and employed to investigate multinucleon transfer processes.The^(40)Ar+^(232)Th reaction was simulated,and the calculated Wilczyński plot was used to verify the model.Additionally,to study the dynamics of multinucleon transfer reactions,the^(136)Xe+^(238)U and^(136)Xe+^(209)Bi reactions were simulated,and the corresponding TKE-mass and angular distributions were computed to analyze the energy dissipation and scattering angles.This investigation enhances our understanding of the dynamics involved in multinucleon transfer processes.展开更多
The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalyst...The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalysts that are both highly effective and robust for conducting the methanol oxidation reaction(MOR).In this work,trimetallic PtCoRu electrocatalysts on nitrogen-doped carbon and multi-wall carbon nanotubes(PtCoRu@NC/MWCNTs)were prepared through a two-pot synthetic strategy.The acceleration of CO oxidation to CO_(2) and the blocking of CO reduction on adjacent Pt active sites were attributed to the crucial role played by cobalt atoms in the as-prepared electrocatalysts.The precise control of Co atoms loading was achieved through precursor stoichiometry.Various physicochemical techniques were employed to analyze the morphology,element composition,and electronic state of the catalyst.Electrochemical investigations and theoretical calculations confirmed that the Pt_(1)Co_(3)Ru_(1)@NC/MWCNTs exhibit excellent electrocatalytic performance and durability for the process of MOR.The enhanced MOR activity can be attributed to the synergistic effect between the multiple elements resulting from precisely controlled Co loading content on surface of the electrocatalyst,which facilitates efficient charge transfer.This interaction between the multiple components also modifies the electronic structures of active sites,thereby promoting the conversion of intermediates and accelerating the MOR process.Thus,achieving precise control over Co loading in PtCoRu@NC/MWCNTs would enable the development of high-performance catalysts for DMFCs.展开更多
The slow water dissociation is the rate-determining step that slows down the reaction rate in alkaline hydrogen evolution reaction(HER).Optimizing the surface electronic structure of the catalyst to lower the energy b...The slow water dissociation is the rate-determining step that slows down the reaction rate in alkaline hydrogen evolution reaction(HER).Optimizing the surface electronic structure of the catalyst to lower the energy barrier of water dissociation and regulating the binding strength of adsorption intermediates are crucial strategy for boosting the catalytic performance of HER.In this study,RuO_(2)/BaRuO_(3)(RBRO)heterostructures with abundant oxygen vacancies and lattice distortion were in-situ constructed under a low temperature via the thermal decomposition of gel-precursor.The RBRO heterostructures obtained at 550℃ exhibited the highest HER activity in 1 M KOH,showing an ultra-low overpotential of 16 mV at 10 mA cm^(-2)and a Tafel slope of 33.37 m V dec^(-1).Additionally,the material demonstrated remarkable durability,with only 25 mV of degradation in overpotential after 200 h of stability testing at 10 mA cm^(-2).Density functional theory calculations revealed that the redistribution of charges at the heterojunction interface can optimize the binding energies of H*and OH*and effectively lower the energy barrier of water dissociation.This research offers novel perspectives on surpassing the water dissociation threshold of alkaline HER catalysts by means of a systematic design of heterogeneous interfaces.展开更多
One-neutron stripping process between^(6)Li and^(209)Bi was studied at 28,30,and 34 MeV using the in-beamγ-ray spectroscopy method.Theγ-γcoincident analysis clearly identified twoγ-rays feeding the ground and long...One-neutron stripping process between^(6)Li and^(209)Bi was studied at 28,30,and 34 MeV using the in-beamγ-ray spectroscopy method.Theγ-γcoincident analysis clearly identified twoγ-rays feeding the ground and long-lived isomeric states,which were employed to determine the cross section.The one-neutron stripping cross sections were similar to the cross sections of complete fusion in the^(6)Li+^(209)Bi system,but the one-neutron stripping cross sections decreased more gradually at the sub-barrier region.A coupled-reaction-channel calculation was performed to study the detailed reaction mechanism of the one-neutron stripping process in^(6)Li.The calculations indicated that the first excited state of 5 Li is critical in the actual one-neutron transfer mechanism,and the valence proton of 209Bi can be excited to the low-lying excited state in(^(6)Li,^(5)Li)reaction,unlike in the(d,p)reaction.展开更多
Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges re...Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges remain in their low site density and unsatisfactory mass transfer structure.Herein,we present a structural engineering approach employing a soft-template coating strategy to fabricate a hollow and hierarchically porous N-doped carbon framework anchored with atomically dispersed Fe sites(FeNCh) as an efficient ORR catalyst.The combination of hierarchical porosity and high exterior surface area is proven crucial for exposing more active sites,which gives rise to a remarkable ORR performance with a half-wave potential of 0.902 V in 0.1 m KOH and 0.814 V in 0.1 m HClO_(4),significantly outperforming its counterpart with solid structure and dominance of micropores(FeNC-s).The mass transfer property is revealed by in-situ electrochemical impedance spectroscopy(EIS) measurement.The distribution of relaxation time(DRT) analysis is further introduced to deconvolve the kinetic and mass transport processes,which demonstrates an alleviated mass transport resistance for FeNC-h,validating the effectiveness of structural engineering.This work not only provides an effective structural engineering approach but also contributes to the comprehensive mass transfer evaluation on advanced electrocatalyst for energy conversion applications.展开更多
Spontaneous combustion of coal is a problem that affects the mining operation and generates environ-mental,economic,social and geotechnical impacts.This phenomenon has been divided into two pro-cesses:ignition and pro...Spontaneous combustion of coal is a problem that affects the mining operation and generates environ-mental,economic,social and geotechnical impacts.This phenomenon has been divided into two pro-cesses:ignition and propagation.Fire propagation develops in coal seams because of a set of factors such as direction and wind speed,fracturing and temperature.In this work,heat transfer and chemical kinetics are studied from conservation equations of energy and species,respectively,using the software COMSOL Multiphysics to simulate the propagation of fires in coal seams.Two possible scenarios were analyzed that usually occur in the walls of the coal seams,such as fire focus and fire complete screens.It was found that the propagation kinetics of the fire changes depending on the temperature,the fractur-ing of rock mass and the area of fire influence.For temperature values lower than 300℃,there is con-sumption around 250 cm^3/h,values around 700℃,the consumption is 1500 cm^3/h,and for fires of 1200℃ have values of 3000 cm^3/h.Depending on the speed of propagation can vary from 4 to 17cm/day,considering on the level and fracturing of the final wall of the open pit.展开更多
With the development of radioactive beam facilities,studies concerning the shell evolution of unstable nuclei have recently gained prominence.Intruder components,particularly s-wave intrusion,in the low-lying states o...With the development of radioactive beam facilities,studies concerning the shell evolution of unstable nuclei have recently gained prominence.Intruder components,particularly s-wave intrusion,in the low-lying states of light neutron-rich nuclei near N=8 are of importance in the study of shell evolution.The use of single-nucleon transfer reactions in inverse kinematics has been a sensitive tool that can be used to quantitatively investigate the single-particle orbital component of selectively populated states.The spin-parity,spectroscopic factor(or single-particle strength),and effective singleparticle energy can all be extracted from such reactions.These observables are often useful to explain the nature of shell evolution,and to constrain,check,and test the parameters used in nuclear structure models.In this article,the experimental studies of the intruder components in lowlying states of neutron-rich nuclei of He,Li,Be,B,and C isotopes using various single-nucleon transfer reactions are reviewed.The focus is laid on the precise determination of the intruder s-wave strength in low-lying states.展开更多
This paper presents the study of convective heat and mass transfer characteristics of an incompressible MHD visco-elastic fluid flow immersed in a porous medium over a stretching sheet with chemical reaction and therm...This paper presents the study of convective heat and mass transfer characteristics of an incompressible MHD visco-elastic fluid flow immersed in a porous medium over a stretching sheet with chemical reaction and thermal stratification effects. The resultant governing boundary layer equations are highly non-linear and coupled form of partial differential equations, and they have been solved by using fourth order Runge-Kutta integration scheme with Newton Raphson shooting method. Numerical computations are carried out for the non-dimensional physical parameters. Here a numerical has been carried out to study the effect of different physical parameters such as visco-elasticity, permeability of the porous medium, magnetic field, Grashof number, Schmidt number, heat source parameter and chemical reaction parameter on the flow, heat and mass transfer characteristics.展开更多
This article addresses melting heat transfer in magnetohydrodynamics(MHD)nanofluid flows by a rotating disk. The analysis is performed in Cu-water and Ag-water nanofluids. Thermal radiation, viscous dissipation, and c...This article addresses melting heat transfer in magnetohydrodynamics(MHD)nanofluid flows by a rotating disk. The analysis is performed in Cu-water and Ag-water nanofluids. Thermal radiation, viscous dissipation, and chemical reactions impacts are added in the nanofluid model. Appropriate transformations lead to the nondimensionalized boundary layer equations. Series solutions for the resulting equations are computed.The role of pertinent parameters on the velocity, temperature, and concentration is analyzed in the outputs. It is revealed that the larger melting parameter enhances the velocity profile while the temperature profile decreases. The surface drag force and heat transfer rate are computed under the influence of pertinent parameters. Furthermore, the homogeneous reaction parameter serves to decrease the surface concentration.展开更多
In this article, we have considered the simultaneous influence of ohmic heating and chemical reaction on heat and mass transfer over a stretching sheet. The effects of applied magnetic field are also taken into consid...In this article, we have considered the simultaneous influence of ohmic heating and chemical reaction on heat and mass transfer over a stretching sheet. The effects of applied magnetic field are also taken into consideration while the induced magnetic field is not considered due to very small magnetics Reynolds number. The governing flow problem comprises of momentum, continuity, thermal energy and concentration equation which are transformed into highly nonlinear coupled ordinary differential equations by means of similarity transforms, which are then, solved numerically with the help of Successive Linearization method(SLM) and Chebyshev Spectral collocation method. Numerical values of skin friction coefficient, local Nusselt number, and Sherwood number are also taken into account with the help of tables. The physical influence of the involved parameters of flow velocity, temperature and concentration distribution is discussed and demonstrated graphically. The numerical comparison is also presented with the existing published results and found that the present results are in excellent agreement which also confirms the validity of the present methodology.展开更多
The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat tr...The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat transfer.Homogeneous–heterogeneous reaction and radiative effects have been further taken into account to reconnoiterproperties of heat transfer.Melting heat transfer and phenomenon of homogeneous–heterogeneous reaction have engrossed widespread utilization in purification of metals,welding process,electroslag melting,biochemical systems,catalysis and several industrial developments.Suitable transformations are utilized to attain a scheme of ordinary differential equations possessing exceedingly nonlinear nature.Homotopic process is employed to develop convergent solutions of the resulting problem.Discussion regarding velocity,thermal field and concentration distribution for several involved parameters is pivotal part.Graphical behaviors of skin friction coefficient and Nusselt number are also portrayed.Concentration of the reactants is found to depreciate as a result of strength of both heterogeneous and homogeneous reaction parameters.With existence of melting phenomenon,declining attitude of fluid temperature is observed for higher radiation parameter.展开更多
Within the framework of the dinuclear system model,the multinucleon transfer dynamics for nearly symmetric nuclear collisions has been investigated.The reaction mechanism in the systems of 198Pt+198Pt and 204Hg+198Pt ...Within the framework of the dinuclear system model,the multinucleon transfer dynamics for nearly symmetric nuclear collisions has been investigated.The reaction mechanism in the systems of 198Pt+198Pt and 204Hg+198Pt was investigated at beam energies around the Coulomb barrier.It was found that the isotopic yields are enhanced with increased incident energy in the domain of proton-rich nuclides.However,the production on the neutron-rich side weakly depends on the energy.The angular distribution with the beam energy was also analyzed in the multinucleon transfer reactions.Projectile-like fragments were produced toward the forward emission with increasing incident energy.The target-like fragments manifested the opposite trend in the transfer reactions.展开更多
The effects of axial ligand on the oxygen atom transfer(OAT)reaction from 5,10,15-tris(pentafluorophenyl)corrole((tpfc)MnVO)to dimethyl sulfide(DMS)have been investigated by density functional theory(DFT)calculations....The effects of axial ligand on the oxygen atom transfer(OAT)reaction from 5,10,15-tris(pentafluorophenyl)corrole((tpfc)MnVO)to dimethyl sulfide(DMS)have been investigated by density functional theory(DFT)calculations.Imidazole(Im),4-methylimidazole(4-MI)and pyridine(Py)were selected as the axial ligands.The results revealed that the axial ligand can form coordinate bond with(tpfc)MnVO in the transition state(TS)of the OAT reaction.The axial coordination favored charge transferring from(tpfc)MnVO to DMS,and weakened the Mn≡O bond in both singlet and triplet states.Furthermore,axial coordination can reduce the energy barrier of neutral(tpfc)MnVO from 23.62 kJ·mol^-1 to less than 3 kJ·mol^-1 in the triplet state,which is significantly lower than in the singlet state.This makes(tpfc)MnVO tend to direct the OAT reaction via triplet state pathway.On the other hand,the energy barriers of[(tpfc)MnVIO]+species from disproportionation pathway increased from 1.26 to 33.95 kJ·mol^-1 in a doublet state.This suggests axial ligands were conducive for direct(tpfc)MnVO OAT reaction pathway.展开更多
In the present article a numerical analysis has been carried out to study the boundary layer flow behavior and heat transfer characteristics of a nanofluid over an exponential stretching sheet. By assuming the stretch...In the present article a numerical analysis has been carried out to study the boundary layer flow behavior and heat transfer characteristics of a nanofluid over an exponential stretching sheet. By assuming the stretching sheet to be impermeable, the effect of chemical reaction, thermal radiation, thermopherosis, Brownian motion and suction parameters in the presence of uniform magnetic field on heat and mass transfer are addressed. The governing system of equations is transformed into coupled nonlinear ordinary differential equations using suitable similarity transformations. The transformed equations are then solved numerically using the well known Runge-Kutta-Fehlberg method of fourth-fifth order. A detailed parametric study is performed to access the influence of the physical parameters on longitudinal velocity, temperature and nanoparticle volume fraction profiles as well as the local skin-friction coefficient, local Nusselt number and the local Sherwood number and the results are presented in both graphical and tabular forms.展开更多
The objective of present work is to study the thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid a...The objective of present work is to study the thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid along a semi-infinite moving porous plate embedded in a porous medium with the presence of pressure gradient, thermal radiation field and chemical reaction. It is assumed that the permeable plate is embedded in a uniform porous medium and moves with a constant velocity in the flow direction in the presence of a transverse magnetic field. It is also assumed that the free stream consists of a mean velocity, temperature and concentration over which are super imposed an exponentially varying with time. The equations of continuity, momentum, energy and diffusion, which govern the flow field, are solved by using a regular perturbation method. The behavior of the velocity, temperature, concentration, Skin-friction, rate of heat transfer and rate of mass transfer has been discussed for variations in the physical parameters. An increase in both Pr and R results a decrease in thermal boundary layer thickness. However, concentration decreases as Kr, Sc increase but it increases with an increase in both So and δ.展开更多
基金the financial support from the National Science Foundation of China(22078190)the National Key R&D Plan of China(2020YFB1505802)。
文摘In the development of Li-ion batteries(LIBs)with high energy/power density,long cycle-life,fast charging,and high safety,an insight into charge transfer reactions is required.Although electrochemical impedance spectroscopy(EIS)is regarded as a powerful diagnosis tool,it is not a direct but an indirect measurement.With respect to this,some critical questions need to be answered:(i)why EIS can reflect the kinetics of charge transfer reactions;(ii)what the inherent logical relationship between impedance models under different physical scenes is;(iii)how charge transfer reactions compete with each other at multiple scales.This work aims at answering these questions via developing a theory framework so as to mitigate the blindness and uncertainty in unveiling charge transfer reactions in LIBs.To systematically answer the above questions,this article is organized into a three-in-one(review,tutorial,and research)type and the following contributions are made:(i)a brief review is given for impedance model development of the LIBs over the past half century;(ii)an open source code toolbox is developed based on the unified impedance model;(iii)the competive mechanisms of charge transfer reactions are unveiled based on the developed EIS-Toolbox@LIB.This work not only clarifies theoretical fundamentals,but also provides an easy-to-use open source code for EIS-Toolbox@LIB to optimize fast charge/discharge,mitigate cycle aging,and improve energy/power density.
基金supported by National Natural Science Foundation of China (Nos. 12105241, 12175072)Natural Science Foundation of Jiangsu Province (No. BK20210788)+3 种基金Jiangsu Provincial Double-Innovation Doctoral Program (No. JSSCBS20211013)University Science Research Project of Jiangsu Province (No. 21KJB140026)Lv Yang Jin Feng (No. YZLYJFJH2021YXBS130)Key Laboratory of High-Precision Nuclear Spectroscopy,Institute of Modern Physics,Chinese Academy of Sciences (No. IMPKFKT2021001)。
文摘We systematically calculated the multinucleon transfer reactions of ^(208)Os,^(208)Pt,^(208)Hg,^(208)Pb,^(208)Po,^(208)Rn,^(208)Ra,and ^(132,136) Xe when bombarded on ^(232) Th and ^(248) Cm at Coulomb barrier energies within the dinuclear system model.These results are in good agreement with the available experimental data.The influence of Coulomb and shell effects on actinide production in these reactions has been rigorously studied.We calculated and analyzed the potential energy surface (PES) and total kinetic energy (TKE) mass distributions for the reactions involving ^(208)Hg,^(208)Pb,and ^(208) Po with ^(248) Cm and ^(232)Th.The PES and TKE spectra shed light on the fragment formation mechanisms in multinucleon transfer reactions,with clear indications of isospin and shell effects.The production cross sections for multinucleon transfer products show a strong dependence on isobar projectiles with a mass number A=208.Isobar projectiles with high N/Z ratios are advantageous for generating neutron-rich target-like fragments.Conversely,products induced by isobar projectiles with larger charge numbers tend to shift toward proton-rich regions.The intertwining of the Coulomb potential and shell effect is evident in the production cross sections of actinide isotopes.Drawing from reactions induced by radioactive projectiles,we anticipate the discovery of several new actinide isotopes near the nuclear drip lines,extending our reach into the superheavy nuclei domain.
基金financially supported by the National Nature Science Foundation of China (Nos. 62001097, 22208048)the Provincial Natural Science Foundation Joint Guidance Project (No. LH2020F001)+2 种基金the Young Elite Scientists Sponsorship Program by CAST (No. YESS20210262)the China Postdoctoral Science Foundation-Funded Project (No. 2021M690571)the Heilongjiang Postdoctoral Fund (No. LBH-Z21096)
文摘Mass transfer can tune the surface concentration of reactants and products and subsequently infl uence the catalytic perfor-mance.The morphology of nanomaterials plays an important role in the mass transfer of reaction microdomains,but related studies are lacking.Herein,a facile electrospinning technique utilizing cellulose was employed to fabricate a series of carbon nanofi bers with diff erent diameters,which exhibited excellent electrochemical nitrate reduction reaction and oxygen evolu-tion reaction activities.Furthermore,the microstructure of electrocatalysts could infl uence the gas-liquid-solid interfacial mass transfer,resulting in diff erent electrochemical performances.
基金financially supported by the Outstanding Youth Scientific Research Project for Colleges and Universities of Anhui Province of China (2022AH020054)the Anhui Provincial Natural Science Foundation (2208085Y06)+2 种基金the National Natural Science Foundation of China (Nos.21975001 and U2002213)the Support Program of Excellent Young Talents in Anhui Provincial Colleges and Universities (gxyq ZD2022034)the Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University (2019FY003025)。
文摘The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption energies of reaction intermediates,and ultimately impacts the catalytic performance.In this study,we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system.Specifically,electrons were transferred from the metal-based species to N-doped carbon,while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel.This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo_(2)C@nitrogen-doped carbon catalyst,with a half-wave potential of 0.91 V towards oxygen reduction reaction(ORR)and a low overpotential of 290 m V at 10 mA cm^(-2)towards oxygen evolution reaction(OER)under alkaline conditions.Additionally,the Fe-Ni/Mo_(2)C@carbon heterojunction catalyst demonstrated high specific capacity(794 mA h g_(Zn)~(-1))and excellent cycling stability(200 h)in a Zn-air battery.Theoretical calculations revealed that Mo_(2)C effectively inhibited charge transfer from Fe to the support,while secondary doping of Ni induced a charge transfer reversal,resulting in electron accumulation in the Fe-Ni alloy region.This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process,enhancing the catalytic efficiency of both ORR and OER.Consequently,our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes.
基金supported by the National Key R&D Program of China(No.2023YFA1606401)the National Natural Science Foundation of China(Nos.12135004,11635003 and 11961141004)。
文摘Multinucleon transfer in low-energy heavy-ion collisions is increasingly considered a promising approach for generating exotic nuclei.Understanding the complex mechanisms involved in multinucleon transfer processes presents significant challenges for the theoretical investigation of nuclear reactions.A Langevin equation model was developed and employed to investigate multinucleon transfer processes.The^(40)Ar+^(232)Th reaction was simulated,and the calculated Wilczyński plot was used to verify the model.Additionally,to study the dynamics of multinucleon transfer reactions,the^(136)Xe+^(238)U and^(136)Xe+^(209)Bi reactions were simulated,and the corresponding TKE-mass and angular distributions were computed to analyze the energy dissipation and scattering angles.This investigation enhances our understanding of the dynamics involved in multinucleon transfer processes.
基金financially supported by the National Natural Science Foundation of China (52200076,22169005,52370057)the Growth Project of Young Scientific and Technological Talents in General Colleges and Universities in Guizhou Province ([2022]143)+4 种基金the Science and Technology Foundation of Guizhou Province ([2022]109)the Natural Science Special Foundation of Guizhou University (202017,702775203301)the Natural Science Foundation of Chongqing (CSTB2022NSCQ-BHX0035)the Special Research Assistant Program of Chinese Academy of Sciencethe Research Foundation of Chongqing University of Science and Technology (ckrc2022026)。
文摘The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalysts that are both highly effective and robust for conducting the methanol oxidation reaction(MOR).In this work,trimetallic PtCoRu electrocatalysts on nitrogen-doped carbon and multi-wall carbon nanotubes(PtCoRu@NC/MWCNTs)were prepared through a two-pot synthetic strategy.The acceleration of CO oxidation to CO_(2) and the blocking of CO reduction on adjacent Pt active sites were attributed to the crucial role played by cobalt atoms in the as-prepared electrocatalysts.The precise control of Co atoms loading was achieved through precursor stoichiometry.Various physicochemical techniques were employed to analyze the morphology,element composition,and electronic state of the catalyst.Electrochemical investigations and theoretical calculations confirmed that the Pt_(1)Co_(3)Ru_(1)@NC/MWCNTs exhibit excellent electrocatalytic performance and durability for the process of MOR.The enhanced MOR activity can be attributed to the synergistic effect between the multiple elements resulting from precisely controlled Co loading content on surface of the electrocatalyst,which facilitates efficient charge transfer.This interaction between the multiple components also modifies the electronic structures of active sites,thereby promoting the conversion of intermediates and accelerating the MOR process.Thus,achieving precise control over Co loading in PtCoRu@NC/MWCNTs would enable the development of high-performance catalysts for DMFCs.
基金supported by the National Natural Science Foundation of China (21721003,22202080 and 22034006)。
文摘The slow water dissociation is the rate-determining step that slows down the reaction rate in alkaline hydrogen evolution reaction(HER).Optimizing the surface electronic structure of the catalyst to lower the energy barrier of water dissociation and regulating the binding strength of adsorption intermediates are crucial strategy for boosting the catalytic performance of HER.In this study,RuO_(2)/BaRuO_(3)(RBRO)heterostructures with abundant oxygen vacancies and lattice distortion were in-situ constructed under a low temperature via the thermal decomposition of gel-precursor.The RBRO heterostructures obtained at 550℃ exhibited the highest HER activity in 1 M KOH,showing an ultra-low overpotential of 16 mV at 10 mA cm^(-2)and a Tafel slope of 33.37 m V dec^(-1).Additionally,the material demonstrated remarkable durability,with only 25 mV of degradation in overpotential after 200 h of stability testing at 10 mA cm^(-2).Density functional theory calculations revealed that the redistribution of charges at the heterojunction interface can optimize the binding energies of H*and OH*and effectively lower the energy barrier of water dissociation.This research offers novel perspectives on surpassing the water dissociation threshold of alkaline HER catalysts by means of a systematic design of heterogeneous interfaces.
基金the National Nature Science Foundation of China(Nos.U2167204,11975040,and U1832130)the Brazilian funding agencies CAPES,CNPq,FAPERJ,and the INCT-FNA(Instituto Nacional de Ciência e Tecnologia-Física Nuclear e Aplicações)+5 种基金research project 464898/2014-5.S.P.Hu was supported by Guang dong Key Research And Development Program(No.2020B040420005)Guang dong Basic and Applied Basic Research Foundation(No.2021B1515120027)Ling Chuang Research Project of China National Nuclear Corporation(No.20221024000072F6-0002-7)Nuclear Energy Development and Research Project(No.HNKF202224(28))the‘111’center(B20065)the U.S.Department of Energy,Office of Science,Office of Nuclear Physics,under contract number DE-AC02-06CH1135.
文摘One-neutron stripping process between^(6)Li and^(209)Bi was studied at 28,30,and 34 MeV using the in-beamγ-ray spectroscopy method.Theγ-γcoincident analysis clearly identified twoγ-rays feeding the ground and long-lived isomeric states,which were employed to determine the cross section.The one-neutron stripping cross sections were similar to the cross sections of complete fusion in the^(6)Li+^(209)Bi system,but the one-neutron stripping cross sections decreased more gradually at the sub-barrier region.A coupled-reaction-channel calculation was performed to study the detailed reaction mechanism of the one-neutron stripping process in^(6)Li.The calculations indicated that the first excited state of 5 Li is critical in the actual one-neutron transfer mechanism,and the valence proton of 209Bi can be excited to the low-lying excited state in(^(6)Li,^(5)Li)reaction,unlike in the(d,p)reaction.
基金National Natural Science Foundation of China (Nos. 22078242 and U20A20153)Applied Basic Research Program of Yunnan Province (Nos. 202101BE070001-032 and 202101BH070002)。
文摘Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges remain in their low site density and unsatisfactory mass transfer structure.Herein,we present a structural engineering approach employing a soft-template coating strategy to fabricate a hollow and hierarchically porous N-doped carbon framework anchored with atomically dispersed Fe sites(FeNCh) as an efficient ORR catalyst.The combination of hierarchical porosity and high exterior surface area is proven crucial for exposing more active sites,which gives rise to a remarkable ORR performance with a half-wave potential of 0.902 V in 0.1 m KOH and 0.814 V in 0.1 m HClO_(4),significantly outperforming its counterpart with solid structure and dominance of micropores(FeNC-s).The mass transfer property is revealed by in-situ electrochemical impedance spectroscopy(EIS) measurement.The distribution of relaxation time(DRT) analysis is further introduced to deconvolve the kinetic and mass transport processes,which demonstrates an alleviated mass transport resistance for FeNC-h,validating the effectiveness of structural engineering.This work not only provides an effective structural engineering approach but also contributes to the comprehensive mass transfer evaluation on advanced electrocatalyst for energy conversion applications.
基金CIMEX Mineral Institute of the National University of Colombia for the trust and support provided for the development of this researchthe Cerrejón company for financing this project
文摘Spontaneous combustion of coal is a problem that affects the mining operation and generates environ-mental,economic,social and geotechnical impacts.This phenomenon has been divided into two pro-cesses:ignition and propagation.Fire propagation develops in coal seams because of a set of factors such as direction and wind speed,fracturing and temperature.In this work,heat transfer and chemical kinetics are studied from conservation equations of energy and species,respectively,using the software COMSOL Multiphysics to simulate the propagation of fires in coal seams.Two possible scenarios were analyzed that usually occur in the walls of the coal seams,such as fire focus and fire complete screens.It was found that the propagation kinetics of the fire changes depending on the temperature,the fractur-ing of rock mass and the area of fire influence.For temperature values lower than 300℃,there is con-sumption around 250 cm^3/h,values around 700℃,the consumption is 1500 cm^3/h,and for fires of 1200℃ have values of 3000 cm^3/h.Depending on the speed of propagation can vary from 4 to 17cm/day,considering on the level and fracturing of the final wall of the open pit.
基金supported by the National Key R&D program of China(No.2018YFA0404403)National Natural Science Foundation of China(Nos.11775004,U1867214,and 11535004)
文摘With the development of radioactive beam facilities,studies concerning the shell evolution of unstable nuclei have recently gained prominence.Intruder components,particularly s-wave intrusion,in the low-lying states of light neutron-rich nuclei near N=8 are of importance in the study of shell evolution.The use of single-nucleon transfer reactions in inverse kinematics has been a sensitive tool that can be used to quantitatively investigate the single-particle orbital component of selectively populated states.The spin-parity,spectroscopic factor(or single-particle strength),and effective singleparticle energy can all be extracted from such reactions.These observables are often useful to explain the nature of shell evolution,and to constrain,check,and test the parameters used in nuclear structure models.In this article,the experimental studies of the intruder components in lowlying states of neutron-rich nuclei of He,Li,Be,B,and C isotopes using various single-nucleon transfer reactions are reviewed.The focus is laid on the precise determination of the intruder s-wave strength in low-lying states.
文摘This paper presents the study of convective heat and mass transfer characteristics of an incompressible MHD visco-elastic fluid flow immersed in a porous medium over a stretching sheet with chemical reaction and thermal stratification effects. The resultant governing boundary layer equations are highly non-linear and coupled form of partial differential equations, and they have been solved by using fourth order Runge-Kutta integration scheme with Newton Raphson shooting method. Numerical computations are carried out for the non-dimensional physical parameters. Here a numerical has been carried out to study the effect of different physical parameters such as visco-elasticity, permeability of the porous medium, magnetic field, Grashof number, Schmidt number, heat source parameter and chemical reaction parameter on the flow, heat and mass transfer characteristics.
文摘This article addresses melting heat transfer in magnetohydrodynamics(MHD)nanofluid flows by a rotating disk. The analysis is performed in Cu-water and Ag-water nanofluids. Thermal radiation, viscous dissipation, and chemical reactions impacts are added in the nanofluid model. Appropriate transformations lead to the nondimensionalized boundary layer equations. Series solutions for the resulting equations are computed.The role of pertinent parameters on the velocity, temperature, and concentration is analyzed in the outputs. It is revealed that the larger melting parameter enhances the velocity profile while the temperature profile decreases. The surface drag force and heat transfer rate are computed under the influence of pertinent parameters. Furthermore, the homogeneous reaction parameter serves to decrease the surface concentration.
文摘In this article, we have considered the simultaneous influence of ohmic heating and chemical reaction on heat and mass transfer over a stretching sheet. The effects of applied magnetic field are also taken into consideration while the induced magnetic field is not considered due to very small magnetics Reynolds number. The governing flow problem comprises of momentum, continuity, thermal energy and concentration equation which are transformed into highly nonlinear coupled ordinary differential equations by means of similarity transforms, which are then, solved numerically with the help of Successive Linearization method(SLM) and Chebyshev Spectral collocation method. Numerical values of skin friction coefficient, local Nusselt number, and Sherwood number are also taken into account with the help of tables. The physical influence of the involved parameters of flow velocity, temperature and concentration distribution is discussed and demonstrated graphically. The numerical comparison is also presented with the existing published results and found that the present results are in excellent agreement which also confirms the validity of the present methodology.
文摘The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat transfer.Homogeneous–heterogeneous reaction and radiative effects have been further taken into account to reconnoiterproperties of heat transfer.Melting heat transfer and phenomenon of homogeneous–heterogeneous reaction have engrossed widespread utilization in purification of metals,welding process,electroslag melting,biochemical systems,catalysis and several industrial developments.Suitable transformations are utilized to attain a scheme of ordinary differential equations possessing exceedingly nonlinear nature.Homotopic process is employed to develop convergent solutions of the resulting problem.Discussion regarding velocity,thermal field and concentration distribution for several involved parameters is pivotal part.Graphical behaviors of skin friction coefficient and Nusselt number are also portrayed.Concentration of the reactants is found to depreciate as a result of strength of both heterogeneous and homogeneous reaction parameters.With existence of melting phenomenon,declining attitude of fluid temperature is observed for higher radiation parameter.
基金supported by the National Natural Science Foundation of China(Nos.11722546 and 11675226)the Talent Program of South China University of Technology。
文摘Within the framework of the dinuclear system model,the multinucleon transfer dynamics for nearly symmetric nuclear collisions has been investigated.The reaction mechanism in the systems of 198Pt+198Pt and 204Hg+198Pt was investigated at beam energies around the Coulomb barrier.It was found that the isotopic yields are enhanced with increased incident energy in the domain of proton-rich nuclides.However,the production on the neutron-rich side weakly depends on the energy.The angular distribution with the beam energy was also analyzed in the multinucleon transfer reactions.Projectile-like fragments were produced toward the forward emission with increasing incident energy.The target-like fragments manifested the opposite trend in the transfer reactions.
基金supported by the National Natural Science Foundation of China(21275057,21671068)Natural Science Foundation of Guangdong Province(S2012010008763,2017A050506048)
文摘The effects of axial ligand on the oxygen atom transfer(OAT)reaction from 5,10,15-tris(pentafluorophenyl)corrole((tpfc)MnVO)to dimethyl sulfide(DMS)have been investigated by density functional theory(DFT)calculations.Imidazole(Im),4-methylimidazole(4-MI)and pyridine(Py)were selected as the axial ligands.The results revealed that the axial ligand can form coordinate bond with(tpfc)MnVO in the transition state(TS)of the OAT reaction.The axial coordination favored charge transferring from(tpfc)MnVO to DMS,and weakened the Mn≡O bond in both singlet and triplet states.Furthermore,axial coordination can reduce the energy barrier of neutral(tpfc)MnVO from 23.62 kJ·mol^-1 to less than 3 kJ·mol^-1 in the triplet state,which is significantly lower than in the singlet state.This makes(tpfc)MnVO tend to direct the OAT reaction via triplet state pathway.On the other hand,the energy barriers of[(tpfc)MnVIO]+species from disproportionation pathway increased from 1.26 to 33.95 kJ·mol^-1 in a doublet state.This suggests axial ligands were conducive for direct(tpfc)MnVO OAT reaction pathway.
文摘In the present article a numerical analysis has been carried out to study the boundary layer flow behavior and heat transfer characteristics of a nanofluid over an exponential stretching sheet. By assuming the stretching sheet to be impermeable, the effect of chemical reaction, thermal radiation, thermopherosis, Brownian motion and suction parameters in the presence of uniform magnetic field on heat and mass transfer are addressed. The governing system of equations is transformed into coupled nonlinear ordinary differential equations using suitable similarity transformations. The transformed equations are then solved numerically using the well known Runge-Kutta-Fehlberg method of fourth-fifth order. A detailed parametric study is performed to access the influence of the physical parameters on longitudinal velocity, temperature and nanoparticle volume fraction profiles as well as the local skin-friction coefficient, local Nusselt number and the local Sherwood number and the results are presented in both graphical and tabular forms.
文摘The objective of present work is to study the thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid along a semi-infinite moving porous plate embedded in a porous medium with the presence of pressure gradient, thermal radiation field and chemical reaction. It is assumed that the permeable plate is embedded in a uniform porous medium and moves with a constant velocity in the flow direction in the presence of a transverse magnetic field. It is also assumed that the free stream consists of a mean velocity, temperature and concentration over which are super imposed an exponentially varying with time. The equations of continuity, momentum, energy and diffusion, which govern the flow field, are solved by using a regular perturbation method. The behavior of the velocity, temperature, concentration, Skin-friction, rate of heat transfer and rate of mass transfer has been discussed for variations in the physical parameters. An increase in both Pr and R results a decrease in thermal boundary layer thickness. However, concentration decreases as Kr, Sc increase but it increases with an increase in both So and δ.