目的:建立同时分析测定山银花配方颗粒中3种活性成分(绿原酸、灰毡毛忍冬皂苷乙、川续断皂苷乙)的方法。方法:采用HPLC-CAD法,以乙腈为流动相A,0.4%醋酸溶液为流动相B,梯度洗脱,流速为1 m L·min^(-1);电喷雾检测器雾化温度35℃。结...目的:建立同时分析测定山银花配方颗粒中3种活性成分(绿原酸、灰毡毛忍冬皂苷乙、川续断皂苷乙)的方法。方法:采用HPLC-CAD法,以乙腈为流动相A,0.4%醋酸溶液为流动相B,梯度洗脱,流速为1 m L·min^(-1);电喷雾检测器雾化温度35℃。结果:绿原酸、灰毡毛忍冬皂苷乙、川续断皂苷乙线性范围分别为0.60~4.00μg、0.90~6.00μg、0.30~2.00μg,相关系数均达到0.999;精密度和稳定性RSD均小于2.0%;重复性RSD均小于2%;绿原酸、灰毡毛忍冬皂苷乙、川续断皂苷乙加样回收率分别为97.1%(n=6)、100.3%(n=6)、100.7%(n=6)。结论:本实验建立的方法重复性良好,准确度高,操作简单,灵敏度高,可用于山银花配方颗粒中绿原酸、灰毡毛忍冬皂苷乙、川续断皂苷乙含量测定。展开更多
Aryloxypropanolamine is an essential structural scaffold for a variety of b-adrenergic receptor antagonists such as metoprolol.Molecules with such a structural motif tend to degrade into α,β ehydroxypropanolamine im...Aryloxypropanolamine is an essential structural scaffold for a variety of b-adrenergic receptor antagonists such as metoprolol.Molecules with such a structural motif tend to degrade into α,β ehydroxypropanolamine impurities via a radicaleinitiated oxidation pathway.These impurities are typically polar and nonchromophoric,and are thus often overlooked using traditional reversed phase chromatography and UV detection.In this work,stress testing of metoprolol confirmed the generation of 3-isopropylamino-1,2-propanediol as a degradation product,which is a specified impurity of metoprolol in the European Pharmacopoeia(impurity N).To ensure the safety and quality of metoprolol drug products,hydrophilic interaction chromatography(HILIC)methods using Halo Penta HILIC column(150mm×4.6 mm,5 μm)coupled with charged aerosol detection(CAD)were developed and optimized for the separation and quantitation of metoprolol impurity N in metoprolol drug products including metoprolol tartrate injection,metoprolol tartrate tablets,and metoprolol succinate extended-release tablets.These HILIC-CAD methods were validated per USP validation guidelines with respect to specificity,linearity,accuracy,and precision,and have been successfully applied to determine impurity N in metoprolol drug products.展开更多
酸枣仁为鼠李科植物酸枣Ziziphus jujuba Mill.var.spinosa(Bunge)Hu ex H.F.Chou的干燥成熟种子,其分为种皮、种仁两个部位,比较研究酸枣仁不同部位化学成分组成及相对含量可为合理开发利用中药酸枣仁资源提供理论依据。基于超高效液...酸枣仁为鼠李科植物酸枣Ziziphus jujuba Mill.var.spinosa(Bunge)Hu ex H.F.Chou的干燥成熟种子,其分为种皮、种仁两个部位,比较研究酸枣仁不同部位化学成分组成及相对含量可为合理开发利用中药酸枣仁资源提供理论依据。基于超高效液相色谱-四极杆飞行时间质谱(UPLC-Q-TOF/MS)技术,从种皮、种仁中共鉴定出57个化学成分。结合主成分分析(PCA)和正交偏最小二乘法判别分析(OPLS-DA)对两者进行差异成分研究,以变量投影重要度(VIP)值>5为标准,筛选了差异成分17个,其中白桦脂酸、桦木酮酸、麦珠子酸和酸枣仁皂苷Ⅰ主要存在于种皮部位,斯皮诺素、酸枣仁皂苷A和6-阿魏酰斯皮诺素等13个化合物主要存在于种仁部位。通过超高效液相色谱-电雾式检测器(UPLC-CAD)结合反梯度补偿技术,建立半定量液相色谱指纹图谱,考察了6个不同结构类型的代表成分的响应一致性,其不同浓度下平均响应因子间的RSD值为7.04%,各化合物响应一致性良好,可用于酸枣仁的半定量表征分析;结果表明:种皮部位主要成分为白桦脂酸和油酸,其中白桦脂酸的含量约是种仁的7倍;种仁部位主要成分为斯皮诺素、酸枣仁皂苷A、亚油酸、白桦脂酸和油酸,其中斯皮诺素、酸枣仁皂苷A的含量分别是种皮的18倍和24倍。综上,本研究阐明了酸枣仁种皮、种仁的化学成分差异,明确了酸枣仁两个部位中各自的主要成分及其相对含量,为酸枣仁不同部位合理开发和利用奠定了基础。展开更多
AIM: Variation in structure-related components in plant products prompted the trend to establish methods, using multiple or total analog analysis, for their effective quality control. However, the general use of routi...AIM: Variation in structure-related components in plant products prompted the trend to establish methods, using multiple or total analog analysis, for their effective quality control. However, the general use of routine quality control is restricted by the limited availability of reference substances. Using an easily available single marker as a reference standard to determine multiple or total analogs should be a practical option. METHOD: In this study, the Ultra-HPLC method was used for the baseline separation of the main components in ginseng extracts. Using a plant chemical component database, ginsenosides in ginseng extracts were identified by Ultra-HPLC-MS analysis. The charged aerosol detection(CAD) system with post-column compensation of the gradient generates a similar response for identical amounts of different analytes, and thus, the content of each ginsenoside in ginseng extracts was determined by comparing the analyte peak area with the reference standard(determination of total analogs by single marker, DTSM). The total ginsenoside content was determined by the summation of reference standard and other ginsenoside components. RESULTS: The results showed that DTSM approaches were available for the determination of total ginsenosides in a high purity ginseng extract because of the removal of impurities. In contrast, DTSM approaches might be suitable for determination of multiple ginsenosides without interference from impurities in the crude ginseng extract. CONCLUSION: Future practical studies similar to the present study should be conducted to verify that DTSM approaches based on CAD with post-column inverse gradient for uniform response are ideal for the quality control of plant products.展开更多
文摘目的:建立同时分析测定山银花配方颗粒中3种活性成分(绿原酸、灰毡毛忍冬皂苷乙、川续断皂苷乙)的方法。方法:采用HPLC-CAD法,以乙腈为流动相A,0.4%醋酸溶液为流动相B,梯度洗脱,流速为1 m L·min^(-1);电喷雾检测器雾化温度35℃。结果:绿原酸、灰毡毛忍冬皂苷乙、川续断皂苷乙线性范围分别为0.60~4.00μg、0.90~6.00μg、0.30~2.00μg,相关系数均达到0.999;精密度和稳定性RSD均小于2.0%;重复性RSD均小于2%;绿原酸、灰毡毛忍冬皂苷乙、川续断皂苷乙加样回收率分别为97.1%(n=6)、100.3%(n=6)、100.7%(n=6)。结论:本实验建立的方法重复性良好,准确度高,操作简单,灵敏度高,可用于山银花配方颗粒中绿原酸、灰毡毛忍冬皂苷乙、川续断皂苷乙含量测定。
文摘Aryloxypropanolamine is an essential structural scaffold for a variety of b-adrenergic receptor antagonists such as metoprolol.Molecules with such a structural motif tend to degrade into α,β ehydroxypropanolamine impurities via a radicaleinitiated oxidation pathway.These impurities are typically polar and nonchromophoric,and are thus often overlooked using traditional reversed phase chromatography and UV detection.In this work,stress testing of metoprolol confirmed the generation of 3-isopropylamino-1,2-propanediol as a degradation product,which is a specified impurity of metoprolol in the European Pharmacopoeia(impurity N).To ensure the safety and quality of metoprolol drug products,hydrophilic interaction chromatography(HILIC)methods using Halo Penta HILIC column(150mm×4.6 mm,5 μm)coupled with charged aerosol detection(CAD)were developed and optimized for the separation and quantitation of metoprolol impurity N in metoprolol drug products including metoprolol tartrate injection,metoprolol tartrate tablets,and metoprolol succinate extended-release tablets.These HILIC-CAD methods were validated per USP validation guidelines with respect to specificity,linearity,accuracy,and precision,and have been successfully applied to determine impurity N in metoprolol drug products.
文摘酸枣仁为鼠李科植物酸枣Ziziphus jujuba Mill.var.spinosa(Bunge)Hu ex H.F.Chou的干燥成熟种子,其分为种皮、种仁两个部位,比较研究酸枣仁不同部位化学成分组成及相对含量可为合理开发利用中药酸枣仁资源提供理论依据。基于超高效液相色谱-四极杆飞行时间质谱(UPLC-Q-TOF/MS)技术,从种皮、种仁中共鉴定出57个化学成分。结合主成分分析(PCA)和正交偏最小二乘法判别分析(OPLS-DA)对两者进行差异成分研究,以变量投影重要度(VIP)值>5为标准,筛选了差异成分17个,其中白桦脂酸、桦木酮酸、麦珠子酸和酸枣仁皂苷Ⅰ主要存在于种皮部位,斯皮诺素、酸枣仁皂苷A和6-阿魏酰斯皮诺素等13个化合物主要存在于种仁部位。通过超高效液相色谱-电雾式检测器(UPLC-CAD)结合反梯度补偿技术,建立半定量液相色谱指纹图谱,考察了6个不同结构类型的代表成分的响应一致性,其不同浓度下平均响应因子间的RSD值为7.04%,各化合物响应一致性良好,可用于酸枣仁的半定量表征分析;结果表明:种皮部位主要成分为白桦脂酸和油酸,其中白桦脂酸的含量约是种仁的7倍;种仁部位主要成分为斯皮诺素、酸枣仁皂苷A、亚油酸、白桦脂酸和油酸,其中斯皮诺素、酸枣仁皂苷A的含量分别是种皮的18倍和24倍。综上,本研究阐明了酸枣仁种皮、种仁的化学成分差异,明确了酸枣仁两个部位中各自的主要成分及其相对含量,为酸枣仁不同部位合理开发和利用奠定了基础。
基金supported by the National Natural Science Foundation of China(81303246)the Jiangsu Provincial Natural Science Foundation of China(BK2011815)+1 种基金the ‘Qing Lan’ Project from Jiangsu Provincial Framework Teacher Support Schemethe Projects of priority-discipline for colleges and universities of Jiangsu Province
文摘AIM: Variation in structure-related components in plant products prompted the trend to establish methods, using multiple or total analog analysis, for their effective quality control. However, the general use of routine quality control is restricted by the limited availability of reference substances. Using an easily available single marker as a reference standard to determine multiple or total analogs should be a practical option. METHOD: In this study, the Ultra-HPLC method was used for the baseline separation of the main components in ginseng extracts. Using a plant chemical component database, ginsenosides in ginseng extracts were identified by Ultra-HPLC-MS analysis. The charged aerosol detection(CAD) system with post-column compensation of the gradient generates a similar response for identical amounts of different analytes, and thus, the content of each ginsenoside in ginseng extracts was determined by comparing the analyte peak area with the reference standard(determination of total analogs by single marker, DTSM). The total ginsenoside content was determined by the summation of reference standard and other ginsenoside components. RESULTS: The results showed that DTSM approaches were available for the determination of total ginsenosides in a high purity ginseng extract because of the removal of impurities. In contrast, DTSM approaches might be suitable for determination of multiple ginsenosides without interference from impurities in the crude ginseng extract. CONCLUSION: Future practical studies similar to the present study should be conducted to verify that DTSM approaches based on CAD with post-column inverse gradient for uniform response are ideal for the quality control of plant products.