Dielectronic recombination(DR)is one of the dominant electron-ion recombination mechanisms for most highly charged ions(HCIs)in cosmic plasmas,and thus,it determines the charge state distribution and ionization balanc...Dielectronic recombination(DR)is one of the dominant electron-ion recombination mechanisms for most highly charged ions(HCIs)in cosmic plasmas,and thus,it determines the charge state distribution and ionization balance therein.To reliably interpret spectra from cosmic sources and model the astrophysical plasmas,precise DR rate coefficients are required to build up an accurate understanding of the ionization balance of the sources.The main cooler storage ring(CSRm)and the experimental cooler storage ring(CSRe)at the Heavy-Ion Research Facility in Lanzhou(HIRFL)are both equipped with electron cooling devices,which provide an excellent experimental platform for electron-ion collision studies for HCIs.Here,the status of the DR experiments at the HIRFL-CSR is outlined,and the DR measurements with Na-like Kr25^(+)ions at the CSRm and CSRe are taken as examples.In addition,the plasma recombination rate coefficients for Ar12^(+),14^(+),Ca14^(+),16^(+),17^(+),Ni19^(+),and Kr25^(+)ions obtained at the HIRFL-CSR are provided.All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00092.展开更多
Atomic radiative data such as excitation energies, transition wavelengths, radiative rates, and level lifetimes with high precision are the essential parameters for the abundance analysis, simulation, and diagnostics ...Atomic radiative data such as excitation energies, transition wavelengths, radiative rates, and level lifetimes with high precision are the essential parameters for the abundance analysis, simulation, and diagnostics in fusion and astrophysical plasmas. In this work, we mainly focus on reviewing our two projects performed in the past decade. One is about the ions with Z■30 that are generally of astrophysical interest, and the other one is about the highly charged krypton(Z = 36)and tungsten(Z = 74) ions that are relevant in research of magnetic confinement fusion. Two different and independent methods, namely, multiconfiguration Dirac–Hartree–Fock(MCDHF) and the relativistic many-body perturbation theory(RMBPT) are usually used in our studies. As a complement/extension to our previous works for highly charged tungsten ions with open M-shell and open N-shell, we also mainly focus on presenting and discussing our complete RMBPT and MCDHF calculations for the excitation energies, wavelengths, electric dipole(E1), magnetic dipole(M1), electric quadrupole(E2), and magnetic quadrupole(M2) transition properties, and level lifetimes for the lowest 148 levels belonging to the 3l3configurations in Al-like W61+. We also summarize the uncertainties of our systematical theoretical calculations, by cross-checking/validating our datasets from our RMBPT and MCDHF calculations, and by detailed comparisons with available accurate observations and other theoretical calculations. The data are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.10569.展开更多
The research progresses on the investigations of atomic structure and collision dynamics with highly charged ions based on the heavy ion storage rings and electron ion beam traps in recent 20 years are reviewed.The st...The research progresses on the investigations of atomic structure and collision dynamics with highly charged ions based on the heavy ion storage rings and electron ion beam traps in recent 20 years are reviewed.The structure part covers test of quantum electrodynamics and electron correlation in strong Coulomb field studied through dielectronic recombi-nation spectroscopy and VUV/x-ray spectroscopy.The collision dynamics part includes charge exchange dynamics in ion-atom collisions mainly in Bohr velocity region,ion-induced fragmentation mechanisms of molecules,hydrogen-bound and van de Waals bound clusters,interference,and phase information observed in ion-atom/molecule collisions.With this achievements,two aspects of theoretical studies related to low energy and relativistic energy collisions are presented.The applications of data relevant to key atomic processes like dielectronic recombination and charge exchanges involving highly charged ions are discussed.At the end of this review,some future prospects of research related to highly charged ions are proposed.展开更多
Tungsten(W)is an important material in tokamak walls and divertors.The W ion charge state distribution and the dynamic behavior of ions play important roles in the investigation of plasma–wall interactions using lase...Tungsten(W)is an important material in tokamak walls and divertors.The W ion charge state distribution and the dynamic behavior of ions play important roles in the investigation of plasma–wall interactions using laser-ablation-based diagnostics such as laser-induced breakdown spectroscopy and laser-induced ablation spectroscopy.In this work,we investigate the temporal and spatial evolutions of differently charged ions in a nanosecond-laser-produced W plasma in vacuum using time-of-flight mass spectroscopy.Ions with different charge states from 1 to 7(W+to W7+)are all observed.The temporal evolutions of the differently charged ions show that ions with higher charge states have higher velocities,indicating that space separation occurs between the differently charged ion groups.Spatially-resolved mass spectroscopy measurements further demonstrate the separation phenomenon.The temporal profile can be accurately fitted by a shifted Maxwell–Boltzmann distribution,and the velocities of the differently charged ions are also obtained from the fittings.It is found that the ion velocities increase continuously from the measured position of 0.75 cm to 2.25 cm away from the target surface,which indicates that the acceleration process lasts through the period of plasma expansion.The acceleration and space separation of the differently charged ions confirm that there is a dynamic plasma sheath in the laser-produced plasma,which provides essential information for the theoretical laser-ablation model with plasma formation and expansion.展开更多
The 2E spectra and substituent effects and target gas pressure dependence of the 2E spectra of 7 biphenyl derivatives were discussed. The electron-donating groups favour the molecular ions, but the electron withdrawin...The 2E spectra and substituent effects and target gas pressure dependence of the 2E spectra of 7 biphenyl derivatives were discussed. The electron-donating groups favour the molecular ions, but the electron withdrawing groups favour the fragaent ions produced by losing the substituents from molecular ions. The variation of target gas pressure affects the TIC,sample ion current,and the ratio of sample ion current to TIC sharply.However it has no effect on the fragmentation pattern.展开更多
Charge transfer cross sections for Kr^q+ with Ne are calculated quantitatively by using modified classical over barrier model in order to clarify energy dependence of charge transfer cross sections in low energy regi...Charge transfer cross sections for Kr^q+ with Ne are calculated quantitatively by using modified classical over barrier model in order to clarify energy dependence of charge transfer cross sections in low energy region. Essential of this model is taking the induced dipole potential into consideration. As a result, this calculation can reproduce systematic energy dependence of experimental results. This suggests that the bending trajectory of the projectile due to an induced dipole potential should be considered to describe pictures of collisions at low energy regime below 1 keV/u.展开更多
Within the framework of the dynamical classical over-barrier model,the soft collisions between slow highly charged ions(SHCIs) Ar 17+ and the large copper clusters under large impact parameters have been studied in...Within the framework of the dynamical classical over-barrier model,the soft collisions between slow highly charged ions(SHCIs) Ar 17+ and the large copper clusters under large impact parameters have been studied in this paper.We present the dominant mechanism of the electron transfer between SHCIs and a large metal cluster by computational simulation.The evolution of the occupation of projectile ions,KL x satellite lines,X-ray yields,Auger electron spectrum and scattering angles are provided.展开更多
The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first ti...The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.展开更多
Spectral line widths produced by collisions between charged particles and emitters are of special interest for precise plasma spectroscopy.The highly charged Ar XV ion is demonstrated to have strong intrashell electro...Spectral line widths produced by collisions between charged particles and emitters are of special interest for precise plasma spectroscopy.The highly charged Ar XV ion is demonstrated to have strong intrashell electron interactions,which manifest as an atomic system with many resonance structures,due to the quasi-degeneracy of orbital energies.In this paper we use the relativistic R-matrix method to investigate the electron-impact broadening of highly charged Ar XV ion spectral lines under the impact approximation.It is found that the results considering resonance structures are significantly different from those of the distorted wave approach.Furthermore,we propose a new empirical formula with a correction term to take into account the effect of resonances for electron-impact widths over a relatively wide range of plasma conditions.The corresponding fitting parameters of the new empirical formula for all 47 calculated transitions are also given with an estimated accuracy within 1%,which should be convenient for practical applications.The dataset that supported the findings of this study is available in Science Data Bank,with the link https://doi.org/10.57760/sciencedb.j00113.00101.展开更多
This paper uses the two-centre atomic orbital close-coupling method to study the ionization and the single electron capture in collision of highly charged Ar^16+ ions with He atoms in the velocity range of 1.2-1.9 a....This paper uses the two-centre atomic orbital close-coupling method to study the ionization and the single electron capture in collision of highly charged Ar^16+ ions with He atoms in the velocity range of 1.2-1.9 a.u.. The relative importance of single ionization (SI) to single capture (SC) is explored. The comparison between the calculation and experimental data shows that the SI/SC cross section ratios from this work are in good agreement with experimental data. The total single electron ionization cross sections and the total single electron capture cross sections are also given for this collision. The investigation of the partial electron capture cross section shows a general tendency of capture to larger n and l with increasing velocity from 1.2 to 1.9 a.u..展开更多
The total absolute cross sections of single-and double-electron capture (SEC and DEC) in the collisions of He^(2+)with He and Ne^(8+)with O_(2),N_(2),and CH_(4) were studied in the energy ranges 3.5–50 keV/u and 2.8...The total absolute cross sections of single-and double-electron capture (SEC and DEC) in the collisions of He^(2+)with He and Ne^(8+)with O_(2),N_(2),and CH_(4) were studied in the energy ranges 3.5–50 keV/u and 2.8–40 keV/u,respectively.Through a deep analysis of the experimental systematic uncertainties in the measurement procedure and data evaluation,the error in the experimental results of the SEC cross sections is less than 9%.Within the uncertainties,the present results of the He^(2+)–He collision show good consistency with previous measurements,validating the experimental system and paving the way for precise measurements of EC cross sections for a variety of ions and neutral gases.The present measurements allow for a test of EC theory and provide crucial EC cross section data for the establishment of plasma models in fusion research and astrophysical X-ray studies.展开更多
In the context of unified hydrodynamics, we discuss the pseudorapidity distributions of the charged particles produced in Au-Au and Cu-Cu collisions at the low RHIC energies of √SNN = 19.6 and 22.4 GeV, respectively....In the context of unified hydrodynamics, we discuss the pseudorapidity distributions of the charged particles produced in Au-Au and Cu-Cu collisions at the low RHIC energies of √SNN = 19.6 and 22.4 GeV, respectively. It is found that the unified hydrodynamics alone can give a good description to the experimental measurements. This is different from the collisions at the maximum RHIC energy of √SNN = 200 GeV or at LHC energy of √SNN= 2.76 TeV, in which the leading particles must be taken into account so that we can properly explain the experimental observations.展开更多
Surface charges and hydration are predominant properties of colloidal particles that govern colloidal stability in aqueous suspensions.These properties usually coexist and interact with each other.The correlation betw...Surface charges and hydration are predominant properties of colloidal particles that govern colloidal stability in aqueous suspensions.These properties usually coexist and interact with each other.The correlation between the surface charge and hydration of minerals is summarized on the basis of innovative experimental,theoretical,and molecular dynamics simulation studies.The factors affecting the adsorption behavior of ions and water molecules,such as ion concentration,ion hydration radius and valence,and surface properties,are discussed.For example,the hydration and adsorption states completely differ between monovalent and divalent ions.For ions of the same valence,the effect of surface charge on the hydration force follows the Hofmeister adsorption series.Electrolyte concentration exerts a significant effect on the hydration force at high ion concentrations.Meanwhile,the ion correlations in high-concentration electrolyte systems become long range.The interfacial water structure largely depends on surface chemistry.The hydration layer between different surfaces shows large qualitative differences.展开更多
Fe K-shell ionization cross sections induced by 2.4-6.0 MeV Xe^20+ are measured and compared with different binary- encounter-approximation (BEA) models. The results indicate that the BEA model corrected both by th...Fe K-shell ionization cross sections induced by 2.4-6.0 MeV Xe^20+ are measured and compared with different binary- encounter-approximation (BEA) models. The results indicate that the BEA model corrected both by the Coulomb repulsion and by the effective nuclear charge (Zeff) agrees well with the experimental data. Comparison of Fe K-shell X-ray emission induced by 5 MeV xenon ions with different initial charge states (20+, 22+, 26+, 30+) verifies the applicability of the effective nuclear charge (Zeff) correction for the BEA model. It is found that Zeff correction is reasonable to describe direct ionization induced by xenon ions with no initial M-shell vacancies. However, when the M shell is opened, the Zeff corrected BEA model is unable to explain the inner-shell ionization, and the electron transfer by molecular-orbital promotion should be considered.展开更多
The collision dynamics and fragmentation process of molecule by highly charged ion impact for single electron capture processes at the low energies below 1 keV/u were studied. The collision energy dependence of the re...The collision dynamics and fragmentation process of molecule by highly charged ion impact for single electron capture processes at the low energies below 1 keV/u were studied. The collision energy dependence of the recoil momentum was obtained experimentally and compared it with those calculated by a theoretical model using a deflection function with polarization potential. A fairly good agreement between the measured and calculated results was reached. This suggests that the polarization potential plays a crucial role in the low-energy region.展开更多
Recently,the quantitative rescattering model(QRS)for nonsequential double ionization(NSDI)is modified by taking into account the potential change(PC)due to the presence of electric field at the time of recollision.Usi...Recently,the quantitative rescattering model(QRS)for nonsequential double ionization(NSDI)is modified by taking into account the potential change(PC)due to the presence of electric field at the time of recollision.Using the improved QRS model,we simulate the longitudinal momentum distributions of doubly charged ions He2+by projecting the correlated two-electron momentum distributions for NSDI of He onto the main diagonal.The obtained results are compared directly with the experimental data at different intensities.It is found that when the PC is considered,the width of momentum distributions reduces and the agreement between theory and experiment is improved.展开更多
A code has been developed to simulate the neutralization and grazing process of slow highly charged ion Xe^q+ on Al(111) surface under the classical-over-the-barrier model. The image energy gain of Xeq+ ions are c...A code has been developed to simulate the neutralization and grazing process of slow highly charged ion Xe^q+ on Al(111) surface under the classical-over-the-barrier model. The image energy gain of Xeq+ ions are calculated and compared with experiment data. The simulation results of image energy gain are in good agreement with the experiment data. Meanwhile, in the present work, the reflection coefficient of incident Xe^q+ on Al(111) surface as a function of the incidence angle, energy and charge state is also studied.展开更多
We survey quite extensively the present research status of ion-stopping in dense plasmas of potential importance for initial confinement fusion(ICF)drivenby intense and heavy ion beams,and alsofor warm dense matter(WD...We survey quite extensively the present research status of ion-stopping in dense plasmas of potential importance for initial confinement fusion(ICF)drivenby intense and heavy ion beams,and alsofor warm dense matter(WDM).First,we putemphasis on every possible mechanism involved in the shaping of the ion projectile effective charge,while losing energy in a target plasma with classical ions and partially degenerate electrons.Then,we switch to ion stopping by target bound electrons,taking detailed account of mean excitation energies.Free electron stopping has already been given a lot of attention in former works[C.Deutsch et al.,Recent Res.Devel.Plasma 1(2000)1-23;Open Plasma Phys.J.3(2010)88-115].Then,we extend the usual standard stopping model(SSM)framework to nonlinear stopping including a treatment of the Z 3 Barkas effect and a confronting comparison of Bloch and Bohr Coulomb logarithms.Finally,we document low velocity ion slowing down(LVISD)in single ion plasmas as well as in binary ionic mixtures(BIM),in connection with specific ICF fuels.展开更多
Indacenodithiophene-co-benzothiadiazole(IDTBT) has emerged as one of the most exciting semiconducting polymers in recent years because of its high electronic mobility and charge transport along the polymer backbone....Indacenodithiophene-co-benzothiadiazole(IDTBT) has emerged as one of the most exciting semiconducting polymers in recent years because of its high electronic mobility and charge transport along the polymer backbone. By using the recently developed ion gel gating technique we studied the charge transport of IDTBT at carrier densities up to 10^21cm^-3.While the conductivity in IDTBT was found to be enhanced by nearly six orders of magnitude by ionic gating, the charge transport in IDTBT was found to remain 3D Mott variable range hopping even down to the lowest temperature of our measurements, 12 K. The maximum mobility was found to be around 0.2 cm^2·V^-1·s^-1, lower than that of Cytop gated field effect transistors reported previously. We attribute the lower mobility to the additional disorder induced by the ionic gating.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. U1932207, 11904371, and 12104437)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB34020000)
文摘Dielectronic recombination(DR)is one of the dominant electron-ion recombination mechanisms for most highly charged ions(HCIs)in cosmic plasmas,and thus,it determines the charge state distribution and ionization balance therein.To reliably interpret spectra from cosmic sources and model the astrophysical plasmas,precise DR rate coefficients are required to build up an accurate understanding of the ionization balance of the sources.The main cooler storage ring(CSRm)and the experimental cooler storage ring(CSRe)at the Heavy-Ion Research Facility in Lanzhou(HIRFL)are both equipped with electron cooling devices,which provide an excellent experimental platform for electron-ion collision studies for HCIs.Here,the status of the DR experiments at the HIRFL-CSR is outlined,and the DR measurements with Na-like Kr25^(+)ions at the CSRm and CSRe are taken as examples.In addition,the plasma recombination rate coefficients for Ar12^(+),14^(+),Ca14^(+),16^(+),17^(+),Ni19^(+),and Kr25^(+)ions obtained at the HIRFL-CSR are provided.All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00092.
基金the support from the National Natural Science Foundation of China (Grant Nos. 12074081 and 12104095)。
文摘Atomic radiative data such as excitation energies, transition wavelengths, radiative rates, and level lifetimes with high precision are the essential parameters for the abundance analysis, simulation, and diagnostics in fusion and astrophysical plasmas. In this work, we mainly focus on reviewing our two projects performed in the past decade. One is about the ions with Z■30 that are generally of astrophysical interest, and the other one is about the highly charged krypton(Z = 36)and tungsten(Z = 74) ions that are relevant in research of magnetic confinement fusion. Two different and independent methods, namely, multiconfiguration Dirac–Hartree–Fock(MCDHF) and the relativistic many-body perturbation theory(RMBPT) are usually used in our studies. As a complement/extension to our previous works for highly charged tungsten ions with open M-shell and open N-shell, we also mainly focus on presenting and discussing our complete RMBPT and MCDHF calculations for the excitation energies, wavelengths, electric dipole(E1), magnetic dipole(M1), electric quadrupole(E2), and magnetic quadrupole(M2) transition properties, and level lifetimes for the lowest 148 levels belonging to the 3l3configurations in Al-like W61+. We also summarize the uncertainties of our systematical theoretical calculations, by cross-checking/validating our datasets from our RMBPT and MCDHF calculations, and by detailed comparisons with available accurate observations and other theoretical calculations. The data are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.10569.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB34020000)the Heavy Ion Research Facility in Lanzhou (HIRFL)
文摘The research progresses on the investigations of atomic structure and collision dynamics with highly charged ions based on the heavy ion storage rings and electron ion beam traps in recent 20 years are reviewed.The structure part covers test of quantum electrodynamics and electron correlation in strong Coulomb field studied through dielectronic recombi-nation spectroscopy and VUV/x-ray spectroscopy.The collision dynamics part includes charge exchange dynamics in ion-atom collisions mainly in Bohr velocity region,ion-induced fragmentation mechanisms of molecules,hydrogen-bound and van de Waals bound clusters,interference,and phase information observed in ion-atom/molecule collisions.With this achievements,two aspects of theoretical studies related to low energy and relativistic energy collisions are presented.The applications of data relevant to key atomic processes like dielectronic recombination and charge exchanges involving highly charged ions are discussed.At the end of this review,some future prospects of research related to highly charged ions are proposed.
基金supported by the National Key R&D Program of China(No.2017YFE0301304)National Natural Science Foundation of China(No.12005034)the China Postdoctoral Science Foundation(No.2019M661087)supported by the US Department of Energy,Office of Defense Nuclear Nonproliferation Research and Development,under contract number DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory。
文摘Tungsten(W)is an important material in tokamak walls and divertors.The W ion charge state distribution and the dynamic behavior of ions play important roles in the investigation of plasma–wall interactions using laser-ablation-based diagnostics such as laser-induced breakdown spectroscopy and laser-induced ablation spectroscopy.In this work,we investigate the temporal and spatial evolutions of differently charged ions in a nanosecond-laser-produced W plasma in vacuum using time-of-flight mass spectroscopy.Ions with different charge states from 1 to 7(W+to W7+)are all observed.The temporal evolutions of the differently charged ions show that ions with higher charge states have higher velocities,indicating that space separation occurs between the differently charged ion groups.Spatially-resolved mass spectroscopy measurements further demonstrate the separation phenomenon.The temporal profile can be accurately fitted by a shifted Maxwell–Boltzmann distribution,and the velocities of the differently charged ions are also obtained from the fittings.It is found that the ion velocities increase continuously from the measured position of 0.75 cm to 2.25 cm away from the target surface,which indicates that the acceleration process lasts through the period of plasma expansion.The acceleration and space separation of the differently charged ions confirm that there is a dynamic plasma sheath in the laser-produced plasma,which provides essential information for the theoretical laser-ablation model with plasma formation and expansion.
文摘The 2E spectra and substituent effects and target gas pressure dependence of the 2E spectra of 7 biphenyl derivatives were discussed. The electron-donating groups favour the molecular ions, but the electron withdrawing groups favour the fragaent ions produced by losing the substituents from molecular ions. The variation of target gas pressure affects the TIC,sample ion current,and the ratio of sample ion current to TIC sharply.However it has no effect on the fragmentation pattern.
文摘Charge transfer cross sections for Kr^q+ with Ne are calculated quantitatively by using modified classical over barrier model in order to clarify energy dependence of charge transfer cross sections in low energy region. Essential of this model is taking the induced dipole potential into consideration. As a result, this calculation can reproduce systematic energy dependence of experimental results. This suggests that the bending trajectory of the projectile due to an induced dipole potential should be considered to describe pictures of collisions at low energy regime below 1 keV/u.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11135002,91026021,11075068,11075069,and 10975065)the Fundamental Research Funds for the Central Universities of China (Grant No. lzujbky-2010-k08)
文摘Within the framework of the dynamical classical over-barrier model,the soft collisions between slow highly charged ions(SHCIs) Ar 17+ and the large copper clusters under large impact parameters have been studied in this paper.We present the dominant mechanism of the electron transfer between SHCIs and a large metal cluster by computational simulation.The evolution of the occupation of projectile ions,KL x satellite lines,X-ray yields,Auger electron spectrum and scattering angles are provided.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402400)the National Natural Science Foundation of China(Grant Nos.11974358 and 11934004)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB34020000)the Heavy Ion Research Facility in Lanzhou(HIRFL).
文摘The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.
基金the National Natural Science Foundation of China(Grant Nos.11934004,U1832201,and 12241410)the Science Challenge Project(Grant No.TZ2016005)+1 种基金the CAEP Foundation(Grant No.CX2019022)the Special Innovation Project for National Defense。
文摘Spectral line widths produced by collisions between charged particles and emitters are of special interest for precise plasma spectroscopy.The highly charged Ar XV ion is demonstrated to have strong intrashell electron interactions,which manifest as an atomic system with many resonance structures,due to the quasi-degeneracy of orbital energies.In this paper we use the relativistic R-matrix method to investigate the electron-impact broadening of highly charged Ar XV ion spectral lines under the impact approximation.It is found that the results considering resonance structures are significantly different from those of the distorted wave approach.Furthermore,we propose a new empirical formula with a correction term to take into account the effect of resonances for electron-impact widths over a relatively wide range of plasma conditions.The corresponding fitting parameters of the new empirical formula for all 47 calculated transitions are also given with an estimated accuracy within 1%,which should be convenient for practical applications.The dataset that supported the findings of this study is available in Science Data Bank,with the link https://doi.org/10.57760/sciencedb.j00113.00101.
基金Project supported by the Excellent young scholars Research Fund of Beijing Institute of Technology,China (Grant No 000Y07-29)the National Natural Science Foundation of China (Grant NO 10674015)
文摘This paper uses the two-centre atomic orbital close-coupling method to study the ionization and the single electron capture in collision of highly charged Ar^16+ ions with He atoms in the velocity range of 1.2-1.9 a.u.. The relative importance of single ionization (SI) to single capture (SC) is explored. The comparison between the calculation and experimental data shows that the SI/SC cross section ratios from this work are in good agreement with experimental data. The total single electron ionization cross sections and the total single electron capture cross sections are also given for this collision. The investigation of the partial electron capture cross section shows a general tendency of capture to larger n and l with increasing velocity from 1.2 to 1.9 a.u..
基金supported by the National Key R&D Program of China (No. 2022YFA1602504)the National Natural Science Foundation of China (Nos. 12204110 and U1832201)Shanghai Leading Academic Discipline Project (Project No. B107)。
文摘The total absolute cross sections of single-and double-electron capture (SEC and DEC) in the collisions of He^(2+)with He and Ne^(8+)with O_(2),N_(2),and CH_(4) were studied in the energy ranges 3.5–50 keV/u and 2.8–40 keV/u,respectively.Through a deep analysis of the experimental systematic uncertainties in the measurement procedure and data evaluation,the error in the experimental results of the SEC cross sections is less than 9%.Within the uncertainties,the present results of the He^(2+)–He collision show good consistency with previous measurements,validating the experimental system and paving the way for precise measurements of EC cross sections for a variety of ions and neutral gases.The present measurements allow for a test of EC theory and provide crucial EC cross section data for the establishment of plasma models in fusion research and astrophysical X-ray studies.
基金Supported by the Shanghai Key Lab of Modern Optical System
文摘In the context of unified hydrodynamics, we discuss the pseudorapidity distributions of the charged particles produced in Au-Au and Cu-Cu collisions at the low RHIC energies of √SNN = 19.6 and 22.4 GeV, respectively. It is found that the unified hydrodynamics alone can give a good description to the experimental measurements. This is different from the collisions at the maximum RHIC energy of √SNN = 200 GeV or at LHC energy of √SNN= 2.76 TeV, in which the leading particles must be taken into account so that we can properly explain the experimental observations.
基金financially supported by the National Natural Science Foundation of China(Nos.51804213,51820105006,51474167,51674183,and 51674174)the China Scholarships Council(No.201906935041)。
文摘Surface charges and hydration are predominant properties of colloidal particles that govern colloidal stability in aqueous suspensions.These properties usually coexist and interact with each other.The correlation between the surface charge and hydration of minerals is summarized on the basis of innovative experimental,theoretical,and molecular dynamics simulation studies.The factors affecting the adsorption behavior of ions and water molecules,such as ion concentration,ion hydration radius and valence,and surface properties,are discussed.For example,the hydration and adsorption states completely differ between monovalent and divalent ions.For ions of the same valence,the effect of surface charge on the hydration force follows the Hofmeister adsorption series.Electrolyte concentration exerts a significant effect on the hydration force at high ion concentrations.Meanwhile,the ion correlations in high-concentration electrolyte systems become long range.The interfacial water structure largely depends on surface chemistry.The hydration layer between different surfaces shows large qualitative differences.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB832902)the National Natural Science Foundation of China(Grant Nos.11275241,11205225,11105192,and 11275238)
文摘Fe K-shell ionization cross sections induced by 2.4-6.0 MeV Xe^20+ are measured and compared with different binary- encounter-approximation (BEA) models. The results indicate that the BEA model corrected both by the Coulomb repulsion and by the effective nuclear charge (Zeff) agrees well with the experimental data. Comparison of Fe K-shell X-ray emission induced by 5 MeV xenon ions with different initial charge states (20+, 22+, 26+, 30+) verifies the applicability of the effective nuclear charge (Zeff) correction for the BEA model. It is found that Zeff correction is reasonable to describe direct ionization induced by xenon ions with no initial M-shell vacancies. However, when the M shell is opened, the Zeff corrected BEA model is unable to explain the inner-shell ionization, and the electron transfer by molecular-orbital promotion should be considered.
基金supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
文摘The collision dynamics and fragmentation process of molecule by highly charged ion impact for single electron capture processes at the low energies below 1 keV/u were studied. The collision energy dependence of the recoil momentum was obtained experimentally and compared it with those calculated by a theoretical model using a deflection function with polarization potential. A fairly good agreement between the measured and calculated results was reached. This suggests that the polarization potential plays a crucial role in the low-energy region.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274219)the Science and Technology Planning Project of Guangdong Province of China(Grant No.180917124960522)the Program for Promotion of Science at Universities in Guangdong Province of China(Grant No.2018KTSCX062)。
文摘Recently,the quantitative rescattering model(QRS)for nonsequential double ionization(NSDI)is modified by taking into account the potential change(PC)due to the presence of electric field at the time of recollision.Using the improved QRS model,we simulate the longitudinal momentum distributions of doubly charged ions He2+by projecting the correlated two-electron momentum distributions for NSDI of He onto the main diagonal.The obtained results are compared directly with the experimental data at different intensities.It is found that when the PC is considered,the width of momentum distributions reduces and the agreement between theory and experiment is improved.
基金Project supported by the Research Fund for the Doctoral Program of Hlgher Education (Grant No 20030730004), the National Natural Science Foundation of China (Grant No 10374039) and the Natural Science Foundation of Gansu Province, China (Grant No ZS031-A25-001-Z).
文摘A code has been developed to simulate the neutralization and grazing process of slow highly charged ion Xe^q+ on Al(111) surface under the classical-over-the-barrier model. The image energy gain of Xeq+ ions are calculated and compared with experiment data. The simulation results of image energy gain are in good agreement with the experiment data. Meanwhile, in the present work, the reflection coefficient of incident Xe^q+ on Al(111) surface as a function of the incidence angle, energy and charge state is also studied.
文摘We survey quite extensively the present research status of ion-stopping in dense plasmas of potential importance for initial confinement fusion(ICF)drivenby intense and heavy ion beams,and alsofor warm dense matter(WDM).First,we putemphasis on every possible mechanism involved in the shaping of the ion projectile effective charge,while losing energy in a target plasma with classical ions and partially degenerate electrons.Then,we switch to ion stopping by target bound electrons,taking detailed account of mean excitation energies.Free electron stopping has already been given a lot of attention in former works[C.Deutsch et al.,Recent Res.Devel.Plasma 1(2000)1-23;Open Plasma Phys.J.3(2010)88-115].Then,we extend the usual standard stopping model(SSM)framework to nonlinear stopping including a treatment of the Z 3 Barkas effect and a confronting comparison of Bloch and Bohr Coulomb logarithms.Finally,we document low velocity ion slowing down(LVISD)in single ion plasmas as well as in binary ionic mixtures(BIM),in connection with specific ICF fuels.
基金Project supported by the Natural Science Foundation of Shanghai,China(Grant No.13ZR1456800)Ph.D. Programs Foundation of Ministry of Education of China(Grant No.20120073110093)+1 种基金the National Natural Science Foundation of China(Grant Nos.11274229,11474198,61274083,61334008,11274229,11474198,11204175)DOE under DE-FG02-04ER46159
文摘Indacenodithiophene-co-benzothiadiazole(IDTBT) has emerged as one of the most exciting semiconducting polymers in recent years because of its high electronic mobility and charge transport along the polymer backbone. By using the recently developed ion gel gating technique we studied the charge transport of IDTBT at carrier densities up to 10^21cm^-3.While the conductivity in IDTBT was found to be enhanced by nearly six orders of magnitude by ionic gating, the charge transport in IDTBT was found to remain 3D Mott variable range hopping even down to the lowest temperature of our measurements, 12 K. The maximum mobility was found to be around 0.2 cm^2·V^-1·s^-1, lower than that of Cytop gated field effect transistors reported previously. We attribute the lower mobility to the additional disorder induced by the ionic gating.