期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices
1
作者 于杰 陈坤基 +5 位作者 马忠元 张鑫鑫 江小帆 吴仰晴 黄信凡 Shunri Oda 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期518-522,共5页
Based on the charge storage mode,it is important to investigate the scaling dependence of memory performance in silicon nanocrystal(Si-NC) nonvolatile memory(NVM) devices for its scaling down limit.In this work,we... Based on the charge storage mode,it is important to investigate the scaling dependence of memory performance in silicon nanocrystal(Si-NC) nonvolatile memory(NVM) devices for its scaling down limit.In this work,we made eight kinds of test key cells with different gate widths and lengths by 0.13-μm node complementary metal oxide semiconductor(CMOS) technology.It is found that the memory windows of eight kinds of test key cells are almost the same of about1.64 V @ ±7 V/1 ms,which are independent of the gate area,but mainly determined by the average size(12 nm) and areal density(1.8×10^(11)/cm^2) of Si-NCs.The program/erase(P/E) speed characteristics are almost independent of gate widths and lengths.However,the erase speed is faster than the program speed of test key cells,which is due to the different charging behaviors between electrons and holes during the operation processes.Furthermore,the data retention characteristic is also independent of the gate area.Our findings are useful for further scaling down of Si-NC NVM devices to improve the performance and on-chip integration. 展开更多
关键词 silicon nanocrystals nonvolatile memory scaling dependence different charging behaviors
下载PDF
Robust Charging Demand Prediction and Charging Network Planning for Heterogeneous Behavior of Electric Vehicles
2
作者 张轶伦 徐思坤 +3 位作者 徐捷 曾学奇 李铮 谢驰 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第1期136-149,共14页
This study addresses a new charging station network planning problem for smart connected electric vehicles.We embed a charging station choice model into a charging network planning model that explicitly considers the ... This study addresses a new charging station network planning problem for smart connected electric vehicles.We embed a charging station choice model into a charging network planning model that explicitly considers the heterogeneity of the charging behavior in a data-driven manner.To cope with the deficiencies from a small size and sparse behavioral data,we propose a robust charging demand prediction method that can significantly reduce the impact of sample errors and missing data.On the basis of these two building blocks,we form and solve a new optimal charging station location and capacity problem by minimizing the construction and charging costs while considering the charging service level,construction budget,and limit to the number of chargers.We use a case study of planning charging stations in Shanghai to validate our contributions and provide managerial insight in this area. 展开更多
关键词 electric vehicle charging network planning charging behavior robust demand prediction
原文传递
Mechanism investigation of A-site doping on modulating electronic band structure and photocatalytic performance towards CO_(2) reduction of LaFeO_(3) perovskite
3
作者 Chi Cao Jinshuo Li +2 位作者 Yang Hu Lin Zhang Wensheng Yang 《Nano Research》 SCIE EI CSCD 2024年第5期3733-3744,共12页
Three kinds of metal atoms with different valence electronic configurations,Bi(6s^(2)6p^(3)),Y(4d^(1)5s^(2)),and Ce(4f^(1)5d^(1)6s^(2)),were selected to investigate the effect of A-site(La^(3+))doping on electronic ba... Three kinds of metal atoms with different valence electronic configurations,Bi(6s^(2)6p^(3)),Y(4d^(1)5s^(2)),and Ce(4f^(1)5d^(1)6s^(2)),were selected to investigate the effect of A-site(La^(3+))doping on electronic band structure,photoelectric properties,and photocatalytic performance of LaFeO_(3) perovskite.It was identified that the Bi doped LaFeO_(3) presented significantly improved photocatalytic activity towards the reduction of CO_(2),while the Y or Ce doped LaFeO_(3) displayed decreased photocatalytic activity compared to the pristine LaFeO_(3).It was revealed that doping of all the three metal atoms resulted in narrowed band gap and thus extended light absorption of LaFeO_(3) by lowering its conduction band minimum(CBM).The recombination rate and mobility of the charge carriers were represented by the relative effective mass(D)between holes and electrons for pristine and A-site doped LaFeO_(3).The doping of Bi resulted in increased D value,attributed to the Bi 6s electron states at the valence band maximum(VBM),and thus promoted separation and transfer of the charge carriers and improved photocatalytic activity of LaFeO_(3).In contrast,the doping of Ce resulted in significantly decreased D value,induced by the highly localized Ce 4f hole states at the CBM,and thus higher recombination rate of the charge carriers and decreased photocatalytic activity of LaFeO_(3).Furthermore,the Y doped LaFeO_(3) with a slightly decreased D value presented slightly increased recombination rate of the charge carriers and thus decreased photocatalytic activity.Such a work provides new insights into the A-site doping in LaFeO_(3) perovskite,which should be helpful for optimizing the electronic band structure and activity of perovskite-type photocatalysts at atomic level. 展开更多
关键词 A-site doping electronic band structure charge carrier behavior photocatalytic CO_(2)reduction perovskite-type photocatalytsts
原文传递
TIME AND POLING HISTORY DEPENDENT ENERGY STORAGE AND DISCHARGE BEHAVIORS IN POLY(VINYLIDENE FLUORIDE-CO-HEXAFLUOROPROPYLENE) RANDOM COPOLYMERS
4
作者 Fang-xiao Guan Jing Wang +2 位作者 Ji-lin Pan Qing Wang Lei Zhu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2011年第1期65-80,共16页
We studied cycle time (0.01-10 s with triangular input waves) and poling history (continuous versus fresh poling) dependent electric energy storage and discharge behaviors in poly(vinylidene fluoride-co-hexafluor... We studied cycle time (0.01-10 s with triangular input waves) and poling history (continuous versus fresh poling) dependent electric energy storage and discharge behaviors in poly(vinylidene fluoride-co-hexafluoropropylene) [P(VDF- HFP)] films using the electric displacement -- the electric field (D-E) hysteresis loop measurements. Since the permanent dipoles in PVDF are orientational in nature, it is generally considered that both charging and discharging processes should be time and poling history dependent. Intriguingly, our experimental results showed that the charging process depended heavily on the cycle time and the prior poling history, and thus the D-E hysteresis loops had different shapes accordingly. However, the discharged energy density did not change no matter how the D-E loop shape varied due to different measurements. This experimental result could be explained in terms of reversible and irreversible polarizations. The reversible polarization could be charged and discharged fairly quickly (〈 5 ms for each process), while the irreversible polarization depended heavily on the poling time and the prior poling history. This study suggests that it is only meaningful to compare the discharged energy density for PVDF and its copolymer films when different cycle times and poling histories are used. 展开更多
关键词 P(VDF-HFP) random copolymer charging and discharging behaviors Time and poling history dependence Dipole switching Compensation polarization.
原文传递
Operation-area-constrained Adaptive Primary Frequency Support Strategy for Electric Vehicle Clusters 被引量:1
5
作者 Tianqi Liu Pengyu Wang +3 位作者 Qiao Peng Min Zhang Tengxin Wang Jinhao Meng 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第6期1982-1994,共13页
Due to their fast response and strong short-term power throughput capacity, electric vehicles(EVs) are promising for providing primary frequency support to power grids. However, due to the complicated charging demands... Due to their fast response and strong short-term power throughput capacity, electric vehicles(EVs) are promising for providing primary frequency support to power grids. However, due to the complicated charging demands of drivers, it is challenging to efficiently utilize the regulation capacity of EV clusters for providing stable primary frequency support to the power grid. Accordingly, this paper proposes an adaptive primary frequency support strategy for EV clusters constrained by the charging-behavior-defined operation area. First, the forced charging boundary of the EV is determined according to the driver's charging behavior, and based on this, the operation area is defined. This ensures full utilization of the available frequency support capacity of the EV. An adaptive primary frequency support strategy of EV clusters is then proposed. The output power of EV is adaptively regulated according to the real-time distance from the EV operating point to the forced charging boundary. With the proposed strategy, when the EV approaches the forced charging boundary, its output power is gradually reduced to zero. Then, the rapid state-of-charge declines of EVs and sudden output power reductions in EV clusters caused by forced charging to meet the driver's charging demands can be effectively avoided. EV clusters can then provide sustainable frequency support to the power grid without violating the driver's charging demands. Simulation results validate the proposed operation-area-constrained adaptive primary frequency support strategy, which outperforms the average strategy in terms of stable output maintenance and the optimal utilization of regulation capacities of EV clusters. 展开更多
关键词 Primary frequency control frequency support electric vehicle vehicle-to-grid(V2G) operation area charging behavior
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部