The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were pe...The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were performed on 6061 aluminum alloy billets at room temperature.The experimental results showed that 5.65% reduction in the extrusion load was attained if the die and ejector were vibrated at a frequency of 100 Hz and amplitude of 0.013 mm in the longitudinal direction.The friction coefficient at the billet and tool system interface determined from the finite element analysis(FEA) decreased from 0.2 without chattering to 0.1 with application of electric-hydraulic chattering.The higher values of instantaneous velocity and direction change of material flow were achieved during the chattering assisted backward extrusion process.The strain distribution of the chattering assisted backward extrusion billet revealed lower maximum strain and smoother strain distribution in comparison with that produced by the conventional extrusion method.展开更多
The chattering characteristic of sliding mode control isanalyzed when it is applied in distributed control systems (DCSs).For a DCS with random time delay and packet dropout, a discreteswitching system model with ti...The chattering characteristic of sliding mode control isanalyzed when it is applied in distributed control systems (DCSs).For a DCS with random time delay and packet dropout, a discreteswitching system model with time varying sampling period isconstructed based on the time delay system method. The reachinglaw based sliding mode controller is applied in the proposedsystem. The exponential stability condition in the form of linearmatrix inequality is figured out based on the multi-Lyaponov functionmethod. Then, the chattering characteristic is analyzed for theswitching system, and a chattering region related with time varyingsampling period and external disturbance is proposed. Finally, numericalexamples are given to illustrate the validity of the analysisresult.展开更多
Achieving asymptotical cooperative goal for multi-agent systems(MASs)with non-autonomous leaders(i.e.,leaders with nonzero inputs)is a critical but challenging issue.Traditional approach is to use discontinuous contro...Achieving asymptotical cooperative goal for multi-agent systems(MASs)with non-autonomous leaders(i.e.,leaders with nonzero inputs)is a critical but challenging issue.Traditional approach is to use discontinuous controllers which may cause chattering phenomenon in practical applications.How to achieve the asymptotical goal via a chattering free cooperative controller remains to be open so far.In this paper,an adaptive continuous controller is designed to achieve zero error consensus tracking in multiple Lur’e systems with a non-autonomous leader under directed switching topology.Firstly,an unknown input observer(UIO)based on relative outputs is given to estimate the relative full states.Then an adaptive continuous controller is designed by introducing a decay function which remains positive into the term that plays the role of eliminating the impacts of leader’s nonzero inputs.Secondly,by using multiple Lyapunov functions(MLFs)technique,it is proven that zero error consensus tracking can be achieved if the average dwell time(ADT)is greater than a positive threshold.Finally,theoretical result is verified by performing simulations on Chua’s circuits.Compared with existing work,the proposed controller can not only achieve asymptotical consensus,but also is chattering free.展开更多
The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncer...The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncertain dynamics.It is prone to wind disturbances that offer a challenge for a trajectory tracking control design.This paper addresses the airship trajectory tracking problem having time varying reference path.A lumped parameter estimation approach under model uncertainties and wind disturbances is opted against distributed parameters.It uses extended Kalman filter(EKF)for uncertainty and disturbance estimation.The estimated parameters are used by sliding mode controller(SMC)for ultimate control of airship trajectory tracking.This comprehensive algorithm,EKF based SMC(ESMC),is used as a robust solution to track airship trajectory.The proposed estimator provides the estimates of wind disturbances as well as model uncertainty due to the mass matrix variations and aerodynamic model inaccuracies.The stability and convergence of the proposed method are investigated using the Lyapunov stability analysis.The simulation results show that the proposed method efficiently tracks the desired trajectory.The method solves the stability,convergence,and chattering problem of SMC under model uncertainties and wind disturbances.展开更多
Purpose-This article proposes a chattering-free sliding mode control scheme with unidirectional auxiliary surfaces(UAS-SMC)for small miniature autonomous helicopters(Trex 250).Design/methodology/approach-The proposed ...Purpose-This article proposes a chattering-free sliding mode control scheme with unidirectional auxiliary surfaces(UAS-SMC)for small miniature autonomous helicopters(Trex 250).Design/methodology/approach-The proposed UAS-SMC scheme consists of a nested sequence of rotor dynamics,angular rate,Euler angle,velocity and position loops.Findings-It is demonstrated that the UAS-SMC strategy can eliminate the chattering phenomenon exhibiting in the convenient SMC method and achieve a better approaching speed.Originality/value-The proposed control strategy is implemented on the helicopter and flight tests clearly demonstrate that a much better performance could be achieved,compared with convenient SMC schemes.展开更多
In this paper, the influence of sampling intervals on the chattering in sliding mode (SM) control systems is considered. The describing function (DF) approach is employed to analyze the chattering characteristics ...In this paper, the influence of sampling intervals on the chattering in sliding mode (SM) control systems is considered. The describing function (DF) approach is employed to analyze the chattering characteristics in the sampling SM control. By the DF calculations and limit cycle existence conditions, an unstable limit cycle and two stable limit cycles are found in the SM control system. The frequencies and amplitudes of the two limit cycles can also be estimated by graphical calculations. The estimation accuracy of chattering parameters is evaluated by the simulations. The results of simulations show that the system could converge to a large and a small limit cycle from different initial conditions.展开更多
An experimental setup for cold extrusion process with electric-hydraulic chattering was developed and its working principle was introduced. The finite element (FE) model for a kind of cup part (material: 20Cr) wa...An experimental setup for cold extrusion process with electric-hydraulic chattering was developed and its working principle was introduced. The finite element (FE) model for a kind of cup part (material: 20Cr) was built by using the software Deform-3D. FE simulation experiments with and without electric-hydraulic chattering were carried out to analyze the velocity fields and the metal grid flow lines. The extrusion ex- periments of the cup part were also performed under different conditions. The difference of metal flow lines with and without electric-hydraulic chattering was discussed via a scanning electron microscope (SEM) and the Keyence super-depth three-dimensional microscopic system. The results showed that with the electric-hydraulic chattering, the velocity of material flow increases, whereas deformation resistance decreases. Electric hydraulic chattering results in easy metal flow, small bending degree of metal flow lines, slender and dense metal grains, and thereby an improved quality of the deformed parts.展开更多
In machining processes,chatter vibrations are always regarded as one of the major limitations for production quality and efficiency.Accurate and timely monitoring of chatter is helpful to maintain stable machining ope...In machining processes,chatter vibrations are always regarded as one of the major limitations for production quality and efficiency.Accurate and timely monitoring of chatter is helpful to maintain stable machining operations.At present,most chatter monitoring methods are based on the energy level at specified chatter frequencies or frequency bands.However,the spectral features of chatter could change during machining operations due to complexity and time-varying dynamics of the physical machining process.The purpose of this paper is to investigate the time-varying chatter features in turning of thin-walled tubular workpieces from the perspective of entropy.The airborne acoustics was selected as the source of information for machining condition monitoring.First,corresponding to the distinguishing surface topographies relevant to machining conditions,the features of the sound signal emitted during turning of the thin-walled cylindrical workpieces were extracted using the spectral analysis and wavelet packet transform,respectively.It was shown that the dominant vibration frequency as well as the energy distribution could shift with the transition of the machining status.After that,two relative entropy indicators based on the spectrum and the wavelet packet energy were constructed to identify chattering events in turning of the thin-walled tubes.The experimental results demonstrate that the proposed indicators could accurately reflect the transition of machining conditions with high sensitivity and robustness in comparison with the traditional FFT-based methods.The achievement of this study lays the foundations of the online chatter monitoring and control technique for turning of the thin-walled tubular workpieces.展开更多
This paper investigates the effects of tool holder materials on chatter vibration in turning operations.The study uses a complex dynamic turning model with two degrees of freedom for the orthogonal cutting system.Tool...This paper investigates the effects of tool holder materials on chatter vibration in turning operations.The study uses a complex dynamic turning model with two degrees of freedom for the orthogonal cutting system.Tool holders made from different materials,including Al 5083,Al 6082,Al 7012,and a standard 4140 material,were subjected to chatter vibration to investigate their process damping capabilities.The study found that the standard tool holder 4140 allows for higher stable depths of cut and produces similar process damping values compared to the other tool holders.Finite element analyses(FEA)were performed to verify the experimental results,and the modal and FEA analyses produced very similar results.The study concludes that future research should investigate the effects of tool holders made from high alloy steel alloys on process damping.Overall,this paper provides important insights into the effects of tool hold-er materials on chatter vibration and process damping in turning operations,which can help in the design of more effi-cient and effective cutting systems.展开更多
A large aspect ratio vibration reducing tool holder based on passive damping vibration reduction technology is designed to solve the vibration problem that occurs in deep hole machining of vertical lathes.A dynamic mo...A large aspect ratio vibration reducing tool holder based on passive damping vibration reduction technology is designed to solve the vibration problem that occurs in deep hole machining of vertical lathes.A dynamic model of passive damping vibration reduction tool holder was established,and the optimal damping ratio,optimal frequency ratio,and maximum relative amplitude were derived.Modal analysis of the passive damping vibrationreduction tool holder was conducted using software.The results showed that the maximum response amplitude of the passive damping vibration reduction tool holder decreased significantly compared to the original one.展开更多
In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method ...In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method is used to solve the differential equations goveming the dynamics of the milling system. Several chatter detection criteria are applied synthetically to the simulated signals and the stability diagram is obtained in time-domain. The simulation results in time-domain show a good agreement with the analytical prediction, which is validated by the cutting experiments. By simulating the chatter stability lobes in the time-domain and analyzing the influences of different spindle speeds on the vibration amplitudes of the tool under a Fixed chip-load condition, conclusions could be drawn as follows: In rough milling, higher machining efficiency can be achieved by selecting a spindle speed corresponding to the axial depth of cut in accordance with the simulated chatter stability lobes, and in Fmish milling, lower surface roughness can be achieved by selecting a spindle speed well beyond the resonant frequency of machining system.展开更多
Considering the self-excited and forced vibrations in high-speed milling processes, a novel method for dynamic optimization of system stability is used to determine the cutting parameters and structural parameters by ...Considering the self-excited and forced vibrations in high-speed milling processes, a novel method for dynamic optimization of system stability is used to determine the cutting parameters and structural parameters by increasing the chatter free material removal rate (CF-MRR) and surface finish. The method is hased on the theory of the chatter stability and the semi-bandwidth of the resonant region. The objective function of the method is material removal rate(MRR),the constraints are chatter stability and surface finish, and the optimizing variables are cutting and structural parameters. The optimization procedure is stated. The method is applied to a milling system and CF-MRR is increased 18.86%. It is shown that the influences of the chatter stability and the resonance are simultaneously considered in the dynamic optimization of the milling system for increasing CF-MRR and the surface finish.展开更多
To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditio...To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively.展开更多
A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain st...A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain strict-feedback nonlinear systems is formulated. Second, the detailed design of NNAGSBSMC is described. The sliding mode control(SMC) law is designed to track a referenced output via backstepping technique.To decrease chattering result from SMC, a radial basis function neural network(RBFNN) is employed to construct the NNAGSBSMC to facilitate adaptive gain scheduling, in which the gains are scheduled adaptively via neural network(NN), with sliding surface and its differential as NN inputs and the gains as NN outputs. Finally, the verification example is given to show the effectiveness and robustness of the proposed approach. Contrasting simulation results indicate that the NNAGS-BSMC decreases the chattering effectively and has better control performance against the BSMC.展开更多
It is now well known that the time-varying sliding mode control (TVSMC) is characterized by its global robustness against matched model uncertainties and disturbances. The accurate tracking problem of the mechanical...It is now well known that the time-varying sliding mode control (TVSMC) is characterized by its global robustness against matched model uncertainties and disturbances. The accurate tracking problem of the mechanical system in the presence of the parametric uncertainty and external disturbance is addressed in the TVSMC framework. Firstly, an exponential TVSMC algorithm is designed and the main features are analyzed. Especially, the control parameter is obtained by solving an optimal problem. Subsequently, the global chattering problem in TVSMC is considered. To reduce the static error resulting from the continuous TVSMC algorithm, a disturbance observer based time-varying sliding mode control (DOTVSMC) algorithm is presented. The detailed design principle and the stability of the closed-loop system under the composite controller are provided. Simulation results verify the effectiveness of the proposed algorithm.展开更多
Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feed...Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feedback item was designed based on robust H∞ control theory. The robust state feedback control was utilized to substitute for the equivalent control of the traditional sliding mode control. Thus the robustness of systems sliding mode motion was improved even the initial states were unknown. Furthermore, when the upper bound of disturbance was unknown, the switching control logic was difficult to design, and the drawbacks of chattering in sliding mode control should also be considered simultaneously. To solve the above-mentioned problems, the fuzzy nonlinear method was applied to approximate the switching control term. Based on the Lyapunov stability theory, the parameter adaptive law which could guarantee the system stability was devised. The proposed control strategy could reduce the system chattering effectively. And the control input would not switch sharply, which improved the practicality of the sliding mode controller. Finally, simulation was conducted on system with parameter perturbations and unknown external disturbances. The result shows that the proposed method could enhance the approaching motion performance effectively. The chattering phenomenon is weakened, and the system possesses stronger robustness against parameter perturbations and external disturbances.展开更多
Two approximation laws of sliding mode for discrete-time variable structure control systems are proposed to overcome the limitations of the exponential approximation law and the variable rate approximation law. By app...Two approximation laws of sliding mode for discrete-time variable structure control systems are proposed to overcome the limitations of the exponential approximation law and the variable rate approximation law. By applying the proposed approximation laws of sliding mode to discrete-time variable structure control systems, the stability of origin can be guaranteed, and the chattering along the switching surface caused by discrete-time variable structure control can be restrained effectively. In designing of approximation laws, the problem that the system control input is restricted is also considered, which is very important in practical systems. Finally a simulation example shows the effectiveness of the two approximation laws proposed.展开更多
Considering the deficiency in milling process parameters selection, based on the modelling of dynamic milling force and the deduction of chatter stability limits, the chatter stability lobes simulation program for mil...Considering the deficiency in milling process parameters selection, based on the modelling of dynamic milling force and the deduction of chatter stability limits, the chatter stability lobes simulation program for milling is developed with MAT- LAB. The simulation optimization application software of dynamics was designed using engineering simulation software Visio Basic. The chatter stability lobes for milling, which can be used as an instruction guide for the selection of process parameters, are simulated with frequency response functions (FRFs) gained by hammer test. The validation and accuracy of the simulation algorithm are verified by experiments. The simulation method has been used in a factory with an excellent application effect.展开更多
For accurate trajectory tracking and obstacle avoidance in finite time of a nonholonomic mobile robot,a trajectory tracking controller based on global fast terminal sliding mode method is proposed,which has the advant...For accurate trajectory tracking and obstacle avoidance in finite time of a nonholonomic mobile robot,a trajectory tracking controller based on global fast terminal sliding mode method is proposed,which has the advantages of chattering-free and adjustable convergence time.First of all,the kinematics model of the robot is established in mobile carrier coordinates.Secondly,the global structure including terminal attractor and exponential convergence of the fast terminal sliding mode trajectory tracking controller is proved by Lyapunov stability theory,ensuring that the trajectory and heading angle tracking error converges to a smaller zero range in finite time.Finally,the artificial potential field obstacle avoidance method is introduced to make the robot not only track the reference trajectory strictly,but also avoid the obstacles.The simulation results show that the proposed method can achieve a stable tracking control in finite time for a given reference trajectory.展开更多
This manuscript presents a new approach MPPT (Maximum Power Point Tracking) for improving and optimizing the performance of a Wind Energy Conversion System (WECS) operating for small variations in wind speed by combin...This manuscript presents a new approach MPPT (Maximum Power Point Tracking) for improving and optimizing the performance of a Wind Energy Conversion System (WECS) operating for small variations in wind speed by combining sliding mode control and fuzzy logic control. The proposed method consists of optimizing the sliding mode controller by the fuzzy controller. The main purpose of the Sliding Mode control-Fuzzy Logic controller (SM-FL) is to ensure the robustness (by eliminating certain disadvantages of the sliding mode control such as the phenomenon of chattering) and the stability of the control system in the case of small variations in conditions atmospheric (here variation of the wind). Our system consists of a wind turbine, a Permanent Magnet Synchronous Generator (PMSG) and a DC-DC boost converter connected to a continuous load. The performances of the method suggested are compared with those of fuzzy logic and fuzzy-Proportional Integral (FL-PI) in term speed of convergence, of tracking time and tracking efficiency. The results of numerical simulation of our system confirmed the best performance of this method.展开更多
基金Project(51275475)supported by the National Natural Science Foundation of ChinaProject(2014BY001)supported by the Department of Education in Zhejiang Province,ChinaProject(2014EP0110)supported by the Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology,Ministry of Education and Zhejiang Province,China
文摘The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were performed on 6061 aluminum alloy billets at room temperature.The experimental results showed that 5.65% reduction in the extrusion load was attained if the die and ejector were vibrated at a frequency of 100 Hz and amplitude of 0.013 mm in the longitudinal direction.The friction coefficient at the billet and tool system interface determined from the finite element analysis(FEA) decreased from 0.2 without chattering to 0.1 with application of electric-hydraulic chattering.The higher values of instantaneous velocity and direction change of material flow were achieved during the chattering assisted backward extrusion process.The strain distribution of the chattering assisted backward extrusion billet revealed lower maximum strain and smoother strain distribution in comparison with that produced by the conventional extrusion method.
基金supported by the National Natural Science Fundation of China(5147618751506221)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2015JQ51792015JM5207)
文摘The chattering characteristic of sliding mode control isanalyzed when it is applied in distributed control systems (DCSs).For a DCS with random time delay and packet dropout, a discreteswitching system model with time varying sampling period isconstructed based on the time delay system method. The reachinglaw based sliding mode controller is applied in the proposedsystem. The exponential stability condition in the form of linearmatrix inequality is figured out based on the multi-Lyaponov functionmethod. Then, the chattering characteristic is analyzed for theswitching system, and a chattering region related with time varyingsampling period and external disturbance is proposed. Finally, numericalexamples are given to illustrate the validity of the analysisresult.
基金supported by the National Natural Science Foundation of China(Grant Nos.62003003 and 62073076)the Natural Science Foundation of Anhui Province(Grant No.2008085QF304)the Talent Programme of Anhui Province for Young Scholars。
文摘Achieving asymptotical cooperative goal for multi-agent systems(MASs)with non-autonomous leaders(i.e.,leaders with nonzero inputs)is a critical but challenging issue.Traditional approach is to use discontinuous controllers which may cause chattering phenomenon in practical applications.How to achieve the asymptotical goal via a chattering free cooperative controller remains to be open so far.In this paper,an adaptive continuous controller is designed to achieve zero error consensus tracking in multiple Lur’e systems with a non-autonomous leader under directed switching topology.Firstly,an unknown input observer(UIO)based on relative outputs is given to estimate the relative full states.Then an adaptive continuous controller is designed by introducing a decay function which remains positive into the term that plays the role of eliminating the impacts of leader’s nonzero inputs.Secondly,by using multiple Lyapunov functions(MLFs)technique,it is proven that zero error consensus tracking can be achieved if the average dwell time(ADT)is greater than a positive threshold.Finally,theoretical result is verified by performing simulations on Chua’s circuits.Compared with existing work,the proposed controller can not only achieve asymptotical consensus,but also is chattering free.
文摘The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncertain dynamics.It is prone to wind disturbances that offer a challenge for a trajectory tracking control design.This paper addresses the airship trajectory tracking problem having time varying reference path.A lumped parameter estimation approach under model uncertainties and wind disturbances is opted against distributed parameters.It uses extended Kalman filter(EKF)for uncertainty and disturbance estimation.The estimated parameters are used by sliding mode controller(SMC)for ultimate control of airship trajectory tracking.This comprehensive algorithm,EKF based SMC(ESMC),is used as a robust solution to track airship trajectory.The proposed estimator provides the estimates of wind disturbances as well as model uncertainty due to the mass matrix variations and aerodynamic model inaccuracies.The stability and convergence of the proposed method are investigated using the Lyapunov stability analysis.The simulation results show that the proposed method efficiently tracks the desired trajectory.The method solves the stability,convergence,and chattering problem of SMC under model uncertainties and wind disturbances.
文摘Purpose-This article proposes a chattering-free sliding mode control scheme with unidirectional auxiliary surfaces(UAS-SMC)for small miniature autonomous helicopters(Trex 250).Design/methodology/approach-The proposed UAS-SMC scheme consists of a nested sequence of rotor dynamics,angular rate,Euler angle,velocity and position loops.Findings-It is demonstrated that the UAS-SMC strategy can eliminate the chattering phenomenon exhibiting in the convenient SMC method and achieve a better approaching speed.Originality/value-The proposed control strategy is implemented on the helicopter and flight tests clearly demonstrate that a much better performance could be achieved,compared with convenient SMC schemes.
基金supported by Industrial Research Projects in department of education of Shaanxi province(2014K05-29)Science Research Projects in department of education of Shaanxi province(14JK1669,14JF028)
文摘In this paper, the influence of sampling intervals on the chattering in sliding mode (SM) control systems is considered. The describing function (DF) approach is employed to analyze the chattering characteristics in the sampling SM control. By the DF calculations and limit cycle existence conditions, an unstable limit cycle and two stable limit cycles are found in the SM control system. The frequencies and amplitudes of the two limit cycles can also be estimated by graphical calculations. The estimation accuracy of chattering parameters is evaluated by the simulations. The results of simulations show that the system could converge to a large and a small limit cycle from different initial conditions.
文摘An experimental setup for cold extrusion process with electric-hydraulic chattering was developed and its working principle was introduced. The finite element (FE) model for a kind of cup part (material: 20Cr) was built by using the software Deform-3D. FE simulation experiments with and without electric-hydraulic chattering were carried out to analyze the velocity fields and the metal grid flow lines. The extrusion ex- periments of the cup part were also performed under different conditions. The difference of metal flow lines with and without electric-hydraulic chattering was discussed via a scanning electron microscope (SEM) and the Keyence super-depth three-dimensional microscopic system. The results showed that with the electric-hydraulic chattering, the velocity of material flow increases, whereas deformation resistance decreases. Electric hydraulic chattering results in easy metal flow, small bending degree of metal flow lines, slender and dense metal grains, and thereby an improved quality of the deformed parts.
基金The financial support of National Natural Science Foundation of China(Grant Nos.52175108,51805352)is gratefully acknowledgedWe also would like to acknowledge the Key Research and Development Project of Shanxi Province(Grant No.202102010101009).
文摘In machining processes,chatter vibrations are always regarded as one of the major limitations for production quality and efficiency.Accurate and timely monitoring of chatter is helpful to maintain stable machining operations.At present,most chatter monitoring methods are based on the energy level at specified chatter frequencies or frequency bands.However,the spectral features of chatter could change during machining operations due to complexity and time-varying dynamics of the physical machining process.The purpose of this paper is to investigate the time-varying chatter features in turning of thin-walled tubular workpieces from the perspective of entropy.The airborne acoustics was selected as the source of information for machining condition monitoring.First,corresponding to the distinguishing surface topographies relevant to machining conditions,the features of the sound signal emitted during turning of the thin-walled cylindrical workpieces were extracted using the spectral analysis and wavelet packet transform,respectively.It was shown that the dominant vibration frequency as well as the energy distribution could shift with the transition of the machining status.After that,two relative entropy indicators based on the spectrum and the wavelet packet energy were constructed to identify chattering events in turning of the thin-walled tubes.The experimental results demonstrate that the proposed indicators could accurately reflect the transition of machining conditions with high sensitivity and robustness in comparison with the traditional FFT-based methods.The achievement of this study lays the foundations of the online chatter monitoring and control technique for turning of the thin-walled tubular workpieces.
基金This study was supported by the Scientific Research Coordination Unit of Pamukkale University under the project number 2011BSP020.
文摘This paper investigates the effects of tool holder materials on chatter vibration in turning operations.The study uses a complex dynamic turning model with two degrees of freedom for the orthogonal cutting system.Tool holders made from different materials,including Al 5083,Al 6082,Al 7012,and a standard 4140 material,were subjected to chatter vibration to investigate their process damping capabilities.The study found that the standard tool holder 4140 allows for higher stable depths of cut and produces similar process damping values compared to the other tool holders.Finite element analyses(FEA)were performed to verify the experimental results,and the modal and FEA analyses produced very similar results.The study concludes that future research should investigate the effects of tool holders made from high alloy steel alloys on process damping.Overall,this paper provides important insights into the effects of tool hold-er materials on chatter vibration and process damping in turning operations,which can help in the design of more effi-cient and effective cutting systems.
基金Science and Technology Research Project of Liaoning Provincial Department of Education:Research on the Application of Damping and Vibration Reduction Technology in Key Components of Machine Tools(JYTMS20230066)The Fund of Liaoning Provincial Natural Science and Technology Foundation Regional Joint(No.2021-YKLH-08).
文摘A large aspect ratio vibration reducing tool holder based on passive damping vibration reduction technology is designed to solve the vibration problem that occurs in deep hole machining of vertical lathes.A dynamic model of passive damping vibration reduction tool holder was established,and the optimal damping ratio,optimal frequency ratio,and maximum relative amplitude were derived.Modal analysis of the passive damping vibrationreduction tool holder was conducted using software.The results showed that the maximum response amplitude of the passive damping vibration reduction tool holder decreased significantly compared to the original one.
基金National Key Technologies R&D Program (2006BA103A16)Fundamental Research Project of COSTIND (K1203020507, B2120061326)
文摘In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method is used to solve the differential equations goveming the dynamics of the milling system. Several chatter detection criteria are applied synthetically to the simulated signals and the stability diagram is obtained in time-domain. The simulation results in time-domain show a good agreement with the analytical prediction, which is validated by the cutting experiments. By simulating the chatter stability lobes in the time-domain and analyzing the influences of different spindle speeds on the vibration amplitudes of the tool under a Fixed chip-load condition, conclusions could be drawn as follows: In rough milling, higher machining efficiency can be achieved by selecting a spindle speed corresponding to the axial depth of cut in accordance with the simulated chatter stability lobes, and in Fmish milling, lower surface roughness can be achieved by selecting a spindle speed well beyond the resonant frequency of machining system.
基金Supported by the National Key Basic Research Program of China("973"Project)(2009CB724401)the China Postdoctoral Science Foundation(20070420208)the Postdoctoral Innovation Foundation of Shandong Province(200702023)~~
文摘Considering the self-excited and forced vibrations in high-speed milling processes, a novel method for dynamic optimization of system stability is used to determine the cutting parameters and structural parameters by increasing the chatter free material removal rate (CF-MRR) and surface finish. The method is hased on the theory of the chatter stability and the semi-bandwidth of the resonant region. The objective function of the method is material removal rate(MRR),the constraints are chatter stability and surface finish, and the optimizing variables are cutting and structural parameters. The optimization procedure is stated. The method is applied to a milling system and CF-MRR is increased 18.86%. It is shown that the influences of the chatter stability and the resonance are simultaneously considered in the dynamic optimization of the milling system for increasing CF-MRR and the surface finish.
基金This project is supported by Aeronautics Foundation of China (No. 00E51022)
文摘To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively.
基金supported by the National Natural Science Foundation of China(11502288)the Natural Science Foundation of Hunan Province(2016JJ3019)+1 种基金the Aeronautical Science Foundation of China(2017ZA88001)the Scientific Research Project of National University of Defense Technology(ZK17-03-32)
文摘A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain strict-feedback nonlinear systems is formulated. Second, the detailed design of NNAGSBSMC is described. The sliding mode control(SMC) law is designed to track a referenced output via backstepping technique.To decrease chattering result from SMC, a radial basis function neural network(RBFNN) is employed to construct the NNAGSBSMC to facilitate adaptive gain scheduling, in which the gains are scheduled adaptively via neural network(NN), with sliding surface and its differential as NN inputs and the gains as NN outputs. Finally, the verification example is given to show the effectiveness and robustness of the proposed approach. Contrasting simulation results indicate that the NNAGS-BSMC decreases the chattering effectively and has better control performance against the BSMC.
基金supported by the National Natural Science Foundation of China (10872030)the Technology Innovation Programme of Beijing Institute of Technology (CX0428)
文摘It is now well known that the time-varying sliding mode control (TVSMC) is characterized by its global robustness against matched model uncertainties and disturbances. The accurate tracking problem of the mechanical system in the presence of the parametric uncertainty and external disturbance is addressed in the TVSMC framework. Firstly, an exponential TVSMC algorithm is designed and the main features are analyzed. Especially, the control parameter is obtained by solving an optimal problem. Subsequently, the global chattering problem in TVSMC is considered. To reduce the static error resulting from the continuous TVSMC algorithm, a disturbance observer based time-varying sliding mode control (DOTVSMC) algorithm is presented. The detailed design principle and the stability of the closed-loop system under the composite controller are provided. Simulation results verify the effectiveness of the proposed algorithm.
基金Project(51476187)supported by the National Natural Science Foundation of China
文摘Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feedback item was designed based on robust H∞ control theory. The robust state feedback control was utilized to substitute for the equivalent control of the traditional sliding mode control. Thus the robustness of systems sliding mode motion was improved even the initial states were unknown. Furthermore, when the upper bound of disturbance was unknown, the switching control logic was difficult to design, and the drawbacks of chattering in sliding mode control should also be considered simultaneously. To solve the above-mentioned problems, the fuzzy nonlinear method was applied to approximate the switching control term. Based on the Lyapunov stability theory, the parameter adaptive law which could guarantee the system stability was devised. The proposed control strategy could reduce the system chattering effectively. And the control input would not switch sharply, which improved the practicality of the sliding mode controller. Finally, simulation was conducted on system with parameter perturbations and unknown external disturbances. The result shows that the proposed method could enhance the approaching motion performance effectively. The chattering phenomenon is weakened, and the system possesses stronger robustness against parameter perturbations and external disturbances.
基金This work was supported by the National Natural Science Foundation of China (No.60274099) and the Foundation of Key Laboratory of Process Industry Automation, Ministry of Education
文摘Two approximation laws of sliding mode for discrete-time variable structure control systems are proposed to overcome the limitations of the exponential approximation law and the variable rate approximation law. By applying the proposed approximation laws of sliding mode to discrete-time variable structure control systems, the stability of origin can be guaranteed, and the chattering along the switching surface caused by discrete-time variable structure control can be restrained effectively. In designing of approximation laws, the problem that the system control input is restricted is also considered, which is very important in practical systems. Finally a simulation example shows the effectiveness of the two approximation laws proposed.
基金Tianjin Municipal Association of Higher Vocational&Technical Education Projects(No.XIV412)
文摘Considering the deficiency in milling process parameters selection, based on the modelling of dynamic milling force and the deduction of chatter stability limits, the chatter stability lobes simulation program for milling is developed with MAT- LAB. The simulation optimization application software of dynamics was designed using engineering simulation software Visio Basic. The chatter stability lobes for milling, which can be used as an instruction guide for the selection of process parameters, are simulated with frequency response functions (FRFs) gained by hammer test. The validation and accuracy of the simulation algorithm are verified by experiments. The simulation method has been used in a factory with an excellent application effect.
基金National Natural Science Foundation of China(No.61673042)Shanxi Province Science Foundation for Youths(No.201701D221123)。
文摘For accurate trajectory tracking and obstacle avoidance in finite time of a nonholonomic mobile robot,a trajectory tracking controller based on global fast terminal sliding mode method is proposed,which has the advantages of chattering-free and adjustable convergence time.First of all,the kinematics model of the robot is established in mobile carrier coordinates.Secondly,the global structure including terminal attractor and exponential convergence of the fast terminal sliding mode trajectory tracking controller is proved by Lyapunov stability theory,ensuring that the trajectory and heading angle tracking error converges to a smaller zero range in finite time.Finally,the artificial potential field obstacle avoidance method is introduced to make the robot not only track the reference trajectory strictly,but also avoid the obstacles.The simulation results show that the proposed method can achieve a stable tracking control in finite time for a given reference trajectory.
文摘This manuscript presents a new approach MPPT (Maximum Power Point Tracking) for improving and optimizing the performance of a Wind Energy Conversion System (WECS) operating for small variations in wind speed by combining sliding mode control and fuzzy logic control. The proposed method consists of optimizing the sliding mode controller by the fuzzy controller. The main purpose of the Sliding Mode control-Fuzzy Logic controller (SM-FL) is to ensure the robustness (by eliminating certain disadvantages of the sliding mode control such as the phenomenon of chattering) and the stability of the control system in the case of small variations in conditions atmospheric (here variation of the wind). Our system consists of a wind turbine, a Permanent Magnet Synchronous Generator (PMSG) and a DC-DC boost converter connected to a continuous load. The performances of the method suggested are compared with those of fuzzy logic and fuzzy-Proportional Integral (FL-PI) in term speed of convergence, of tracking time and tracking efficiency. The results of numerical simulation of our system confirmed the best performance of this method.