Highly pure active γ-Al2O3 nanoparticles were synthesized from aluminum nitrate and ammonium carbonate with a little surfactant by chemical precipitation method. The factors affecting the synthesis process were studi...Highly pure active γ-Al2O3 nanoparticles were synthesized from aluminum nitrate and ammonium carbonate with a little surfactant by chemical precipitation method. The factors affecting the synthesis process were studied. The properties of γ-Al2O3 nanoparticles were characterized by DTA, XRD, BET, TEM, laser granularity analysis and impurity content analysis. The results show that the amorphous precursor AI(OH)3 sols are produced by using 0.1 mol/L Al(NO3)3·9H2O and 0.16 mol/L (NH4)2CO3·H2O reaction solutions, according to the volume ratio 1.33, adding 0.024%(volume fraction) surfactant PEG600, and reacting at 40℃, 1000 r/min stirring rate for 15min. Then, after stabilizing for 24 h, the precursors were extracted and filtrated by vacuum, washed thoroughly with deionized water and dehydrated ethanol, dried in vacuum at 80℃ for 8h, final calcined at 800℃ for 1h in the air, and high purity active γ-Al2O3 nanoparticles can be prepared with cubic in crystal system, OH^7-FD3M in space group, about 9 nm in crystal grain size, about 20 nm in particle size and uniform size distribution, 131.35 m^2/g in BET specific surface area, 7 - 11 nm in pore diameter, and not lower than 99.93% in purity.展开更多
Quantum chemical calculations on some possible equilibrium geometries of C24O2 isomers derived from C24 (D6) and C24O have been performed using density functional theory (DFT) method. The geometric and electronic ...Quantum chemical calculations on some possible equilibrium geometries of C24O2 isomers derived from C24 (D6) and C24O have been performed using density functional theory (DFT) method. The geometric and electronic structures as well as the relative energies and thermal stabilities of various C24O2 isomers at the ground state have been calculated at the B3LYP/6-31G(d) level of theory. And the 1,4,2,5-C24O2 isomer was found to be the most stable geometry where two oxygen atoms were added to the longest carbon-carbon bonds in the same pentagon from a thermodynamic point of view. Based on the optimized neutral geometries, the vertical ionization potential and vertical electron affinity have been obtained. Meanwhile, the vibrational frequencies, IR spectrum, and 13C chemical shifts of various C24O2 isomers have been calculated and analyzed.展开更多
The surface conductivity of poly [ 2-methoxy-5-(3'-methyl) butoxy]-p-phenylene vinylene (PMOMBOPV) films doped with FeCl3 and H2SO4 by chemical method and implanted by N^+ ions was studied and the comparison of ...The surface conductivity of poly [ 2-methoxy-5-(3'-methyl) butoxy]-p-phenylene vinylene (PMOMBOPV) films doped with FeCl3 and H2SO4 by chemical method and implanted by N^+ ions was studied and the comparison of environmental stability of conductive behavior was also investigated. The energy and dose of N^+ ions were in the rang 15~35 keV and 3. 8×10^15~9. 6×10^16 ions/cm^2, respectively. The conductivity of PMOMBOPV film was enhanced remarkably with the increases of the energy and dose of N^+ ions. For example, the conductivity of PMOMBOPV film was 3. 2×10^-2S/cm when ion implantation was performed with an energy of 35 keV at a dose of 9. 6 × 10^14 ions/cm^2 , which was almost seven orders of magnitude higher than that of film unimplanted. The environmental stability of conductive behavior for ionimplanted film was much better than that of chemical doped films. Moreover, the conductive activation energy of ion-implanted films was measured to be about 0.17 eV.展开更多
The structural characteristics of different alkoxides of Y. Ba and Cu are studied with quantum chemi-cal CNDO /2 calculations. The relative hydrolysis rate coefficients k_M of them are obtained according tothe relati...The structural characteristics of different alkoxides of Y. Ba and Cu are studied with quantum chemi-cal CNDO /2 calculations. The relative hydrolysis rate coefficients k_M of them are obtained according tothe relationship between frontier orbitals and organic chemical reactions. Based on the above results. properexperimental conditions for the preparation of homogeneous ultra-purity. submicro high-T_cYBa_2Cu_3O_(7-δ) superconducting powders are proposed.展开更多
The nano-Bi2O3 powders were prepared by a chemical precipitation method with Bi(NO3)3, HNO3 and NaOH as reactants. The structural characteristics and morphology of nano-Bi2O3 powders were investigated by X-ray diffr...The nano-Bi2O3 powders were prepared by a chemical precipitation method with Bi(NO3)3, HNO3 and NaOH as reactants. The structural characteristics and morphology of nano-Bi2O3 powders were investigated by X-ray diffraction and transmission electron microscopy, respectively. The results show that under the optimum condition that 300g/L Bi(NO3)3 reacts at 90℃ for 2h, the Bi2O3 powders with 60nm on the average and 99.5% in purity are obtained. The prepared nano-Bi2O3 powders contain a mixed crystal structure of monoclinic and triclinic instead of traditional structure of monoclinic α-Bi2O3. And the mixed crystal structure is stable in air. The reason for the appearance of the mixed crystal structure may be that the ionic radius ratio of Bi 3+ to O 2- changes easily during the formation of nano-Bi2O3 particles by a chemical precipitation method.展开更多
SnO 2 powder was prepared by chemical precipitation method. Effects of starting materials concentration, pH value of final system and treating temperature on the particle size were investigated by means of X-ray diffr...SnO 2 powder was prepared by chemical precipitation method. Effects of starting materials concentration, pH value of final system and treating temperature on the particle size were investigated by means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The parameters of chemical precipitation were optimized. It is concluded that the concentration of starting material and pH value of final system has little effect on the SnO 2 particle size, but heat treatment do greatly affect the particle size. If the treating temperature is lower than 500 ℃, the particle size has a good stability; otherwise, the particle size remarkably increases with increasing temperature. The dispersing agents have various influences on SnO 2 powder as the polarity of dispersing agents changed.展开更多
To improve the cyclic stability at high temperature and thermal stability, the spherical Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 was synthesized by a modified co-precipitation method, and the physical and electrochemic...To improve the cyclic stability at high temperature and thermal stability, the spherical Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 was synthesized by a modified co-precipitation method, and the physical and electrochemical properties were studied. The TEM images showed that Li(Ni0.5Co0.2Mn0.3)O2 was modified successfully with nano-Al2O3. The discharge capacity retention of Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 maintained about 99% after 200 cycles at high temperature(55 ℃), while that of the bare one was only 86%. Also, unlike bare Li(Ni0.5Co0.2Mn0.3)O2, the Al2O3-modified material cathode exhibited good thermal stability.展开更多
Density function theory and discrete variation method (DFT-DVM) were used to study the adsorption of [Au(AsS 3)] 2- on the surface of kaolinite.The correlation among structure,chemical bond and stability was discuss...Density function theory and discrete variation method (DFT-DVM) were used to study the adsorption of [Au(AsS 3)] 2- on the surface of kaolinite.The correlation among structure,chemical bond and stability was discussed.Several models were selected with [Au(AsS 3)] 2- in different directions and sites.The results show that the models with gold on the edge of kaolinite basal layer contain pincerlike bond among gold and several oxygen atoms and form strong Au-O covalent bond,so these models are more stable than those with gold above or under the layer.The models with gold near to [AlO 2(OH) 4] octahedra are more stable than those with gold near to the vacancy without aluminium.These two stable tendencies in kaolinite-[Au(AsS 3)] 2- are stronger than that in kaolinite-Au systems.The interaction between [Au(AsS 3)] 2- and kaolinite is stronger than that between gold and kaolinite,and this interaction is strong enough to form the surface complexes.展开更多
The equilibrium geometries, energies, harmonic vibrational frequencies, and nucleus independent chemical shifts (NICS) of the new type sandwich structures [As4MAs4]^n- (M = Fe, Co, Ni, Ru, Rh, Pd, Os, Ir and Pt; n ...The equilibrium geometries, energies, harmonic vibrational frequencies, and nucleus independent chemical shifts (NICS) of the new type sandwich structures [As4MAs4]^n- (M = Fe, Co, Ni, Ru, Rh, Pd, Os, Ir and Pt; n = 0, 1 or 2) are investigated at the B3LYP level. All the [As4MAs4]^n- species adopt staggered (D4d) conformations as their stable structures and eclipsed (D4h) conformations as their transition states, and once the sandwich complexes are formed, the As4^2- square properties remain unchanged. The NICS calculation confirms that the complexes of Fe, Co, and Ni are aromatic with negative NICS values, and those of Ru, Rh, and lx exhibit slight aromaticity, while those of Pd, Os, and Pt show slight antiaromaticity.展开更多
The title compound was synthesized by the base catalyzed reaction of 5-((quinolin- 8-yloxy)methyl)-1,3,4-oxadiazole-2(3H)-thione with methyl chloroacetate. The structure was supported by the spectroscopic data a...The title compound was synthesized by the base catalyzed reaction of 5-((quinolin- 8-yloxy)methyl)-1,3,4-oxadiazole-2(3H)-thione with methyl chloroacetate. The structure was supported by the spectroscopic data and unambiguously confirmed by single-crystal X-ray diffraction studies. It crystallizes from a methanol solution in the triclinic space group Pi with unit cell dimensions a = 7.4509(9), b = 10.2389(12), c = 12.2299(15)A, a = 74.771(2), β = 77.956(2), 7 = 69.263(2)°, V = 834.98(17) A3 and Z = 2. In order to gain some valuable insights into the molecular structure, the quantum mechanical calculations were performed using both HF and time-dependent density functional theory at the B3LYP/6-31G(d,p) level. The molecular geometry from X-ray determination of the title compound in the ground state has been compared using the Hartree-Fock (HF) and density functional theory (DFT) with the 6-31G(d) basis set. The calculated results show that the DFT and HF can well reproduce the structure of the title compound. The energetic behavior of the title compound was examined using the B3LYP method with the 6-31G(d) basis set. The harmonic vibrational frequencies calculated have been compared with the experimental FTIR and FT-Raman spectra. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the 13C and 1H NMR chemical shifts of the title compound. Moreover, molecular electrostatic potential and thermodynamic parameters of the title compound were investigated by theoretical calculations.展开更多
文摘Highly pure active γ-Al2O3 nanoparticles were synthesized from aluminum nitrate and ammonium carbonate with a little surfactant by chemical precipitation method. The factors affecting the synthesis process were studied. The properties of γ-Al2O3 nanoparticles were characterized by DTA, XRD, BET, TEM, laser granularity analysis and impurity content analysis. The results show that the amorphous precursor AI(OH)3 sols are produced by using 0.1 mol/L Al(NO3)3·9H2O and 0.16 mol/L (NH4)2CO3·H2O reaction solutions, according to the volume ratio 1.33, adding 0.024%(volume fraction) surfactant PEG600, and reacting at 40℃, 1000 r/min stirring rate for 15min. Then, after stabilizing for 24 h, the precursors were extracted and filtrated by vacuum, washed thoroughly with deionized water and dehydrated ethanol, dried in vacuum at 80℃ for 8h, final calcined at 800℃ for 1h in the air, and high purity active γ-Al2O3 nanoparticles can be prepared with cubic in crystal system, OH^7-FD3M in space group, about 9 nm in crystal grain size, about 20 nm in particle size and uniform size distribution, 131.35 m^2/g in BET specific surface area, 7 - 11 nm in pore diameter, and not lower than 99.93% in purity.
文摘Quantum chemical calculations on some possible equilibrium geometries of C24O2 isomers derived from C24 (D6) and C24O have been performed using density functional theory (DFT) method. The geometric and electronic structures as well as the relative energies and thermal stabilities of various C24O2 isomers at the ground state have been calculated at the B3LYP/6-31G(d) level of theory. And the 1,4,2,5-C24O2 isomer was found to be the most stable geometry where two oxygen atoms were added to the longest carbon-carbon bonds in the same pentagon from a thermodynamic point of view. Based on the optimized neutral geometries, the vertical ionization potential and vertical electron affinity have been obtained. Meanwhile, the vibrational frequencies, IR spectrum, and 13C chemical shifts of various C24O2 isomers have been calculated and analyzed.
基金National Natural Science Foundation of China (60277002) Scientific Research Foundation of Xi’an JiaotongUniversity
文摘The surface conductivity of poly [ 2-methoxy-5-(3'-methyl) butoxy]-p-phenylene vinylene (PMOMBOPV) films doped with FeCl3 and H2SO4 by chemical method and implanted by N^+ ions was studied and the comparison of environmental stability of conductive behavior was also investigated. The energy and dose of N^+ ions were in the rang 15~35 keV and 3. 8×10^15~9. 6×10^16 ions/cm^2, respectively. The conductivity of PMOMBOPV film was enhanced remarkably with the increases of the energy and dose of N^+ ions. For example, the conductivity of PMOMBOPV film was 3. 2×10^-2S/cm when ion implantation was performed with an energy of 35 keV at a dose of 9. 6 × 10^14 ions/cm^2 , which was almost seven orders of magnitude higher than that of film unimplanted. The environmental stability of conductive behavior for ionimplanted film was much better than that of chemical doped films. Moreover, the conductive activation energy of ion-implanted films was measured to be about 0.17 eV.
文摘The structural characteristics of different alkoxides of Y. Ba and Cu are studied with quantum chemi-cal CNDO /2 calculations. The relative hydrolysis rate coefficients k_M of them are obtained according tothe relationship between frontier orbitals and organic chemical reactions. Based on the above results. properexperimental conditions for the preparation of homogeneous ultra-purity. submicro high-T_cYBa_2Cu_3O_(7-δ) superconducting powders are proposed.
文摘The nano-Bi2O3 powders were prepared by a chemical precipitation method with Bi(NO3)3, HNO3 and NaOH as reactants. The structural characteristics and morphology of nano-Bi2O3 powders were investigated by X-ray diffraction and transmission electron microscopy, respectively. The results show that under the optimum condition that 300g/L Bi(NO3)3 reacts at 90℃ for 2h, the Bi2O3 powders with 60nm on the average and 99.5% in purity are obtained. The prepared nano-Bi2O3 powders contain a mixed crystal structure of monoclinic and triclinic instead of traditional structure of monoclinic α-Bi2O3. And the mixed crystal structure is stable in air. The reason for the appearance of the mixed crystal structure may be that the ionic radius ratio of Bi 3+ to O 2- changes easily during the formation of nano-Bi2O3 particles by a chemical precipitation method.
文摘SnO 2 powder was prepared by chemical precipitation method. Effects of starting materials concentration, pH value of final system and treating temperature on the particle size were investigated by means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The parameters of chemical precipitation were optimized. It is concluded that the concentration of starting material and pH value of final system has little effect on the SnO 2 particle size, but heat treatment do greatly affect the particle size. If the treating temperature is lower than 500 ℃, the particle size has a good stability; otherwise, the particle size remarkably increases with increasing temperature. The dispersing agents have various influences on SnO 2 powder as the polarity of dispersing agents changed.
基金Funded by the National High Technology Research and Development Program of China(863 Program)(No.2015AA034600)Province Science and Technology in Anhui(No.1301021011)
文摘To improve the cyclic stability at high temperature and thermal stability, the spherical Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 was synthesized by a modified co-precipitation method, and the physical and electrochemical properties were studied. The TEM images showed that Li(Ni0.5Co0.2Mn0.3)O2 was modified successfully with nano-Al2O3. The discharge capacity retention of Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 maintained about 99% after 200 cycles at high temperature(55 ℃), while that of the bare one was only 86%. Also, unlike bare Li(Ni0.5Co0.2Mn0.3)O2, the Al2O3-modified material cathode exhibited good thermal stability.
基金FundedbytheNationalNaturalScienceFoundationofChi na (No .4 0 172 0 17)
文摘Density function theory and discrete variation method (DFT-DVM) were used to study the adsorption of [Au(AsS 3)] 2- on the surface of kaolinite.The correlation among structure,chemical bond and stability was discussed.Several models were selected with [Au(AsS 3)] 2- in different directions and sites.The results show that the models with gold on the edge of kaolinite basal layer contain pincerlike bond among gold and several oxygen atoms and form strong Au-O covalent bond,so these models are more stable than those with gold above or under the layer.The models with gold near to [AlO 2(OH) 4] octahedra are more stable than those with gold near to the vacancy without aluminium.These two stable tendencies in kaolinite-[Au(AsS 3)] 2- are stronger than that in kaolinite-Au systems.The interaction between [Au(AsS 3)] 2- and kaolinite is stronger than that between gold and kaolinite,and this interaction is strong enough to form the surface complexes.
文摘The equilibrium geometries, energies, harmonic vibrational frequencies, and nucleus independent chemical shifts (NICS) of the new type sandwich structures [As4MAs4]^n- (M = Fe, Co, Ni, Ru, Rh, Pd, Os, Ir and Pt; n = 0, 1 or 2) are investigated at the B3LYP level. All the [As4MAs4]^n- species adopt staggered (D4d) conformations as their stable structures and eclipsed (D4h) conformations as their transition states, and once the sandwich complexes are formed, the As4^2- square properties remain unchanged. The NICS calculation confirms that the complexes of Fe, Co, and Ni are aromatic with negative NICS values, and those of Ru, Rh, and lx exhibit slight aromaticity, while those of Pd, Os, and Pt show slight antiaromaticity.
文摘The title compound was synthesized by the base catalyzed reaction of 5-((quinolin- 8-yloxy)methyl)-1,3,4-oxadiazole-2(3H)-thione with methyl chloroacetate. The structure was supported by the spectroscopic data and unambiguously confirmed by single-crystal X-ray diffraction studies. It crystallizes from a methanol solution in the triclinic space group Pi with unit cell dimensions a = 7.4509(9), b = 10.2389(12), c = 12.2299(15)A, a = 74.771(2), β = 77.956(2), 7 = 69.263(2)°, V = 834.98(17) A3 and Z = 2. In order to gain some valuable insights into the molecular structure, the quantum mechanical calculations were performed using both HF and time-dependent density functional theory at the B3LYP/6-31G(d,p) level. The molecular geometry from X-ray determination of the title compound in the ground state has been compared using the Hartree-Fock (HF) and density functional theory (DFT) with the 6-31G(d) basis set. The calculated results show that the DFT and HF can well reproduce the structure of the title compound. The energetic behavior of the title compound was examined using the B3LYP method with the 6-31G(d) basis set. The harmonic vibrational frequencies calculated have been compared with the experimental FTIR and FT-Raman spectra. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the 13C and 1H NMR chemical shifts of the title compound. Moreover, molecular electrostatic potential and thermodynamic parameters of the title compound were investigated by theoretical calculations.