期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An efficient light-to-heat conversion coupling photothermal effect and exothermic chemical reaction in Au NRs/V_(2)C MXene membranes for high-performance laser ignition
1
作者 Bo Yang Peng-fei Tang +6 位作者 Chun-jiao Liu Rui Li Xiao-dong Li Jin Chen Zhi-qiang Qiao Hong-ping Zhang Guang-cheng Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第5期834-842,共9页
MXene,a new type of two-dimensional materials,have been demonstrated as one of the best photothermal materials owing to their strong light-matter interaction and high photothermal conversion efficiency in recent years... MXene,a new type of two-dimensional materials,have been demonstrated as one of the best photothermal materials owing to their strong light-matter interaction and high photothermal conversion efficiency in recent years.Herein,we report the intriguing light-to-heat conversion property of vanadium carbide(V_(2)C)MXene under irradiation of millisecond laser pulse.Unlike the typical photothermal materials,the V_(2)C MXene not only converts the incident laser energy to heat by the physical photothermal effect,but also triggers the exothermic oxidation of the V_(2)C MXene.The oxidation could be greatly promoted with addition of plasmonic Au nanorods(Au NRs)for light absorption enhancement.Owing to the unique light-to-heat conversion property,the Au NRs/V_(2)C MXene membrane could serve as high temperature pulse(HTP)generators that is proposed for numerous applications with high demand for immediacy.As a proof-of concept application,Au NRs/V_(2)C MXene membrane was applied for laser ignition of the high energy density materials,such as 2,4,6,8,10,12-(hexanitrohexaaza)cyclododecane(HNIW or CL-20).An improved ignition performance,in terms of lowered laser threshold,is achieved as compared to the state-of-the-art light-to-heat conversion materials. 展开更多
关键词 V_(2)C MXene Light-to-heat conversion exothermic chemical reaction Plasmonic Au nanorods High temperature pulse Laser ignition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部