Layered double hydroxides are one class or kind of 2 D layered materials that are considered promising for use in the supercapacitor.Although there have been many studies on the structure,composition,properties,and el...Layered double hydroxides are one class or kind of 2 D layered materials that are considered promising for use in the supercapacitor.Although there have been many studies on the structure,composition,properties,and electrode fabrication of layered double hydroxides,none summarize the effects of various modification methods on the structure and performance of layered double hydroxides in the supercapacitor.In a bid to fill this gap,in this review,we summarize the progress of modification methods such as exfoliation,intercalation,vacancy,doping,phase transformation,and composition regulation of layered double hydroxides in the field of the supercapacitor and put forward some opinions regarding the progress of research on the methods used in modifying the layered double hydroxides.展开更多
Cutting fluid is crucial in ensuring surface quality and machining accuracy during machining.However,traditional mineral oil-based cutting fluids no longer meet modern machining’s health and environmental protection ...Cutting fluid is crucial in ensuring surface quality and machining accuracy during machining.However,traditional mineral oil-based cutting fluids no longer meet modern machining’s health and environmental protection require-ments.As a renewable,pollution-free alternative with excellent processing characteristics,vegetable oil has become an inevitable replacement.However,vegetable oil lacks oxidation stability,extreme pressure,and antiwear proper-ties,which are essential for machining requirements.The physicochemical characteristics of vegetable oils and the improved methods’application mechanism are not fully understood.This study aims to investigate the effects of viscosity,surface tension,and molecular structure of vegetable oil on cooling and lubricating properties.The mechanisms of autoxidation and high-temperature oxidation based on the molecular structure of vegetable oil are also discussed.The study further investigates the application mechanism and performance of chemical modification and antioxidant additives.The study shows that the propionic ester of methyl hydroxy-oleate obtained by epoxidation has an initial oxidation temperature of 175℃.The application mechanism and extreme pressure performance of conventional extreme pressure additives and nanoparticle additives were also investigated to solve the problem of insufficient oxidation resistance and extreme pressure performance of nanobiological lubricants.Finally,the study discusses the future prospects of vegetable oil for chemical modification and nanoparticle addition.The study provides theoretical guidance and technical support for the industrial application and scientific research of vegetable oil in the field of lubrication and cooling.It is expected to promote sustainable development in the manufacturing industry.展开更多
The chemical modification of the surface of calcium alginate gel beads (CAGB) via grafting copolymerization with vinyl acetate (VAc) was studied. The optimum reaction conditions with activation and graft copolymerizat...The chemical modification of the surface of calcium alginate gel beads (CAGB) via grafting copolymerization with vinyl acetate (VAc) was studied. The optimum reaction conditions with activation and graft copolymerization two steps were explored. First, 5 grams CAGB with 2.5 mm initial diameter was initiated with 0.0493 mol/L K2S2O8 at 51 °C for 30 min in 15 mL 1 % PVA/H2O. Then 4.34 moi/L VAc was added dropwise and the reaction was allowed to proce at 48 °C for 3 h. The grafting efficiency could come up to 30%. It was found the stability of modified CAGB in the air and in electrolyte solutions was greatly improved.展开更多
Tryptophan(Trp) residues in a pullulanase were modified by N-bromosuccinimide(NBS). The results of the Spande method indicate that there are 18 Trp residues in the pullulanase and nine of them are located on the s...Tryptophan(Trp) residues in a pullulanase were modified by N-bromosuccinimide(NBS). The results of the Spande method indicate that there are 18 Trp residues in the pullulanase and nine of them are located on the surface af the enzyme. Three of these Trp residues are nonessential residues which show the fastest reaction rate according to the Zou's plot. Two of the seven relative faster reacting residues are essential for the activity of the enzyme. The other eight are the slowest in the reaction rate or non-reactive residues for the reaction. The fluorescence and circular dichroism(CD) spectra of the pullulanase have been changed after the reaction with NBS. Potassium iodide(KI) and acrylamide also have remarkable influences on the fluorescence spectra of the pullulanase.展开更多
Chemically modified ordered mesoporous carbon CMK-3 materials were prepared by means of an easy wet-oxidative method in 2 mol/L nitric acid aqueous solution. A large amount of oxygen-containing functional groups were ...Chemically modified ordered mesoporous carbon CMK-3 materials were prepared by means of an easy wet-oxidative method in 2 mol/L nitric acid aqueous solution. A large amount of oxygen-containing functional groups were introduced onto the CMK-3 surface. Modified CMK-3(m-CMK-3) and aniline monomer were polymerized via an in situ chemical oxidative polymerization method. Morphological characterizations of m-CMK-3/PANI (polyaniline) composites were carried out via field emission scanning electron microscopy(SEM). Their electrochemical properties were investigated with cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The m-CMK-3/PANI composites have excellent properties in capacitance, and the highest specific capacitance(SC) value was up to 489 F/g, suggesting their potential application in the electrode material for electrochemical capacitors.展开更多
A linear alpha -D-(1-->3)-glucan, named PSG, was obtained from the spores of Ganoderma lucidum. The synthesis of positively and negatively charged polyelectrolytes from PSG was developed. Amine groups and carboxyme...A linear alpha -D-(1-->3)-glucan, named PSG, was obtained from the spores of Ganoderma lucidum. The synthesis of positively and negatively charged polyelectrolytes from PSG was developed. Amine groups and carboxymethyl groups were introduced through nucleophilic substitution with 3-chloropropylamine or chloroacetic acid, respectively, Reaction conditions were varied to obtain insight into the influence of variables on the degree of substitution.展开更多
Various azo compounds(Modified dyes)have been synthesised by chemical modification of areca nut extract(epicate-chin),a plant-based Polyphenolic compound to get semi-synthetic dyes.Three different primary amines namel...Various azo compounds(Modified dyes)have been synthesised by chemical modification of areca nut extract(epicate-chin),a plant-based Polyphenolic compound to get semi-synthetic dyes.Three different primary amines namely p-nitro aniline,p-anisidine and aniline,were diazotized to form their corresponding diazonium salts which were further coupled with an areca nut extract.Preliminary characterization of the areca nut extract and the resultant azo compounds(Modified dyes)was carried out in terms of melting point,solubility tests,thin layer chromatography,UV-Visible and FTIR spectroscopy.These modified dyes were further applied on polyester and nylon fabrics and%dye exhaustion was evaluated.Dyed fabrics were further tested for their fastness properties such as wash fastness,rubbing fastness,light fastness and sublimation fastness.The results of the fastness tests indicate that,all the three modified dyes have good dyeability for polyester and nylon fabrics.The dyed fabrics were also tested for ultraviolet protection factor which showed very good ultraviolet protection.展开更多
Cellulose nanocrystals(CNCs) have been widely applied in biomaterials and show great biocompatibility and mechanical strength. In this review, the chemical reactions applied in CNC surface modification and their appli...Cellulose nanocrystals(CNCs) have been widely applied in biomaterials and show great biocompatibility and mechanical strength. In this review, the chemical reactions applied in CNC surface modification and their application in CNC based biomaterials are introduced. Furthermore, the conjugation of different functional molecules and nanostructures to the surface of CNCs are discussed, with focus on the binding modes, reaction conditions, and reaction mechanisms. With this introduction, we hope to provide a clear view of the strategies for surface modification of CNCs and their application in biomaterials, thus providing an overall picture of promising CNC-based biomaterials and their production.展开更多
The hydrogen storage alloy electrode of Mm(NiCoMnAl) 5 was activated by etching the alloy in a hot concentrated KOH solution. The electrochemical measurement demonstrates that the modified alloy electrode can reach ...The hydrogen storage alloy electrode of Mm(NiCoMnAl) 5 was activated by etching the alloy in a hot concentrated KOH solution. The electrochemical measurement demonstrates that the modified alloy electrode can reach its stable capacity at the first charge/discharge cycle and also shows low overpotential, indicating full activation of the etched alloy material. It was found from ICP, SEM and EDAX analyses that the activation process leads to surface modification by reconstructing of a new electroactive surface.展开更多
In the phosphate buffer solution of pH>7,the cysteine sensitized the electrochemiluminescence (ECL) of luminol.It could be modified on the surface of platinum electrode and furthermore adsorbing the luminol on its e...In the phosphate buffer solution of pH>7,the cysteine sensitized the electrochemiluminescence (ECL) of luminol.It could be modified on the surface of platinum electrode and furthermore adsorbing the luminol on its exterior to construct an ECL sensor.The ECL intensity of this sensor was strong enough and very stable.There wasn't obvious decrease of ECL intensity for thirty times of using in 48 hours with the relative standard deviation (RSD) of 0.98%.It could be used to determine some quenching effective molecules such as superoxide dismutase (SOD) with negative response upon the concentration range from 4.8 IU/ml to 57.6 IU/ml.展开更多
Glutathione peroxidase(GPX) plays an important role in scavenging reactive oxygen species. A series of catalytic antibodies with GPX activity have been generated by the authors of' this study. To obtain humanized c...Glutathione peroxidase(GPX) plays an important role in scavenging reactive oxygen species. A series of catalytic antibodies with GPX activity have been generated by the authors of' this study. To obtain humanized catalytic antibodies, the phage-displayed human antibody library was used to select novel antibodies by repetitive screening, Phage antibodies, scFv-B8 and scFv-H6 with the GSH-binding site, were obtained from the library by enzyme-linked immu- nosorbent assay(ELISA) analysis with 4 rounds of scelection against their respective haptens, S-2,4-dinitriphenyl t-butyl ester(GStI-s-DNP-Bu) and S-2,4-dinit,-iphenyl t-hexyl ester(GSH-s-I)NP-He). Nevertheless, several studies need to be condueted to determine whether scFv-B8 and seFv-tI6 possess GPX activity. 1'o enhance the speed of the selection, selenocysteine(Sec, the catalytic group of GPX) was incorporated directly into the phages, scFv-B8 and seFv-H6, by chemical mutation to form the phages Se-scFv-B8 and Se-scFv-H6. The GPX activities were found to be 3012 units/μmol and 2102 units/μmol, respectively. To improve the GPX activity of the phage Se-scFv-B8, DNA shuffling was used to construct a secondary library and another positive phage antibody scFv-B9 was screened out by another panning against GSH-s-DNP-Bu. When Sec was incorporated via chemical mutation into the phage antibody scFv-B9, its GPX activity reached 3560 units/μmol, which is 1.17-fold higher than the phage antibody Se-scFv-B8 and almost approached the order of magnitude of native GPX. The rapid selection is the prerequisite for generating humanized Se-seFv with GPX activity.展开更多
Silicene is a two-dimensional(2D) material, which is composed of a single layer of silicon atoms with sp2–sp3mixed hybridization. The sp2–sp3mixed hybridization renders silicene excellent reactive ability, facilitat...Silicene is a two-dimensional(2D) material, which is composed of a single layer of silicon atoms with sp2–sp3mixed hybridization. The sp2–sp3mixed hybridization renders silicene excellent reactive ability, facilitating the chemical modification of silicene. It has been demonstrated that chemical modification effectively enables the tuning of the properties of silicene. We now review all kinds of chemical modification methods for silicene, including hydrogenation, halogenation,organic surface modification, oxidation, doping and formation of 2D hybrids. The effects of these chemical modification methods on the geometrical, electronic, optical, and magnetic properties of silicene are discussed. The potential applications of chemically modified silicene in a variety of fields such as electronics, optoelectronics, and magnetoelectronics are introduced. We finally envision future work on the chemical modification of silicene for further advancing the development of silicene.展开更多
Acetylacetone was firstly introduced into the aqueous media with the presence of aluminum sec-butoxide and pep-tizator. It was confirmed that the UV (ultraviolet) absorption band of acetylacetone underwent 14 nm of re...Acetylacetone was firstly introduced into the aqueous media with the presence of aluminum sec-butoxide and pep-tizator. It was confirmed that the UV (ultraviolet) absorption band of acetylacetone underwent 14 nm of red-shift due to the formation of the six-membered ring of the complex between alumina and acetylacetone in the aqueous solution. It was also found that the chemical modification can be dissociated by the UV irradiation with a wavelength shorter than 286 nm as a result of the excitation of π-π* transition in the complex.展开更多
A novel lysozyme named β-1, 4-N, 6-O-diacetylmuramidase R2 was purified and characterized from Streptomyces griseus. The molecular weight of the enzyme was determined by MALDI-TOF-MS as 23.5 kDa. The N-terminal amino...A novel lysozyme named β-1, 4-N, 6-O-diacetylmuramidase R2 was purified and characterized from Streptomyces griseus. The molecular weight of the enzyme was determined by MALDI-TOF-MS as 23.5 kDa. The N-terminal amino acid sequence was DTSGVQGIDVSHWQG. Chemical modification of β-1, 4-N, 6-O-diacetylmuramidase R2 indicated that sulfhydryl group and carbamidine of arginine residues are not essential for the activity of the enzyme, but lysine residues and imidazole of histidine residues are essential for the activity. The number of essential tryptophan and carboxyl groups was found that only one tryptophan residue and three carboxyl groups in the active site.展开更多
The amino acid composition of the superoxide dismutase(SOD) from camellia pollen was measured and the tryptophan(Trp) residues were modified by using N-bromosuccinimide(NBS). The results show that there are 21 T...The amino acid composition of the superoxide dismutase(SOD) from camellia pollen was measured and the tryptophan(Trp) residues were modified by using N-bromosuccinimide(NBS). The results show that there are 21 Trp residues in an SOD molecule and seven of which are located on the surface of the enzyme. By researching the fluorescence spectra of the native SOD and the modified SOD, we have found that the emission wavelength of Trp is at 335 nm and the fluorescence intensity will decrease when the enzyme is modified. The results also show that potassium iodide(KI) can significantly quench the fluorescence of the native SOD, but it has a less pronounced effect on the modified enzyme. Glycerin as a surface activation reagent can stabilize the fluorescence of the modified enzyme.展开更多
The chemical modification of human plasminogen(HPg) was studied with 1-ethyl-3-(3- dimethyl aminopropyl) carbodiimide(EDC), N -acetylimidazole(NAI), 1,2-cyclohexanedione(CHD), chloramine T(Ch-T) and N -bro...The chemical modification of human plasminogen(HPg) was studied with 1-ethyl-3-(3- dimethyl aminopropyl) carbodiimide(EDC), N -acetylimidazole(NAI), 1,2-cyclohexanedione(CHD), chloramine T(Ch-T) and N -bromosuccinimide(NBS) as modifying reagents at its carboxyl group, tyrosine, arginine, methionine and tryptophan residues, respectively. The results indicate that tyrosine and arginine residues are not essential for HPg activity, while carboxyl groups, methionine and tryptophan residues are important for the activity of HPg. The Keech and Farrant′s kinetic analysis reveals that one tryptophan residue, one methionine residue and two carboxyl groups are essential for HPg activity.展开更多
A new product PEGylated rhaFGF was obtained by site-directed chemical modification.When compared with unmodified rhaFGF, PEGylated rhaFGF showed comparable bioactivity and superior stability at 37℃ in mouse serum and...A new product PEGylated rhaFGF was obtained by site-directed chemical modification.When compared with unmodified rhaFGF, PEGylated rhaFGF showed comparable bioactivity and superior stability at 37℃ in mouse serum and the stronger resistant potency to trypsin. This was accompanied by a substantial decreasing tmmunogenicity.Site-specific PEGylation of rhaFGF may increase its therapeutic potency in humans.展开更多
Tryptophan(Trp)residues in pullulanase have been chemically modified with N-bromossuccinimide(NBS). The results of ultraviolet spectra indicated that there are 18 Trp residues in pullulanase and nine of them are l...Tryptophan(Trp)residues in pullulanase have been chemically modified with N-bromossuccinimide(NBS). The results of ultraviolet spectra indicated that there are 18 Trp residues in pullulanase and nine of them are located on the surface of the enzyme. Three of these Trp residues are none-essential residues which showed the fastest reaction speed by Zhou's plot. Two of the seven relative faster reacting residues are essential for the activity of the enzyme. The other eight are none-reactive residues with lowest reaction speed.展开更多
This paper evaluates the adsorption capacity of chemically sugarcane bagasses with sodium hydroxide(SHS),citric acid(CAS),tartaric acid(TAS)and unmodified sugarcane bagasse(SB)for cadmium adsorption in water environme...This paper evaluates the adsorption capacity of chemically sugarcane bagasses with sodium hydroxide(SHS),citric acid(CAS),tartaric acid(TAS)and unmodified sugarcane bagasse(SB)for cadmium adsorption in water environment.The results prove adsorption capacity for Cd(II)increases after chemical modification and the adsorption fits perfectly with the Langmuir isotherm.CAS had the highest maximum adsorption capacity of 45.45 mg/g followed by TAS with 38.46 mg/g and SHS with 29.41 at optimum pH 5.0 and 120 minutes equilibrium time while 1 g SB removed 18.8 mg Cd(II)in the same conditions.The kinetics study of the process followed a pseudo-secondorder rate expression,that indicated a strong interaction between the biosorbents and adsorbate.The sugarcane bagasse and modified sugarcane bagasse were characterized by scanning electron microscopy(SEM)and Fourier transform infrared spectroscopy(FTIR)analysis.The chemical modification was confirmed by the presence of carboxyl and esters groups created at 1,738 cm-1.The estimation of acid groups in modified materials shows the enhancement of this group after modification.On the other hand,desorption studies showed the high leaching of cadmium ion from the biosorbent leading to the efficient reutilization of materials.展开更多
基金The authors gratefully acknowledge the financial support provided by the project of Technological Innovation and Application Development in Chongqing(cstc2019jscxmsxm0378)the National Natural Science Foundation of China(Grant No.21576034 and 51908092)+1 种基金the State Education Ministry and Fundamental Research Funds for the Central Universities(2019CDQYCL042,2019CDXYCL0031,106112017CDJXSYY0001,2018CDYJSY0055,106112017CDJQJ138802,106112017CDJSK04XK11,and 2018CDQYCL0027)the Joint Funds of the National Natural Science Foundation of China-Guangdong(Grant No.U1801254).
文摘Layered double hydroxides are one class or kind of 2 D layered materials that are considered promising for use in the supercapacitor.Although there have been many studies on the structure,composition,properties,and electrode fabrication of layered double hydroxides,none summarize the effects of various modification methods on the structure and performance of layered double hydroxides in the supercapacitor.In a bid to fill this gap,in this review,we summarize the progress of modification methods such as exfoliation,intercalation,vacancy,doping,phase transformation,and composition regulation of layered double hydroxides in the field of the supercapacitor and put forward some opinions regarding the progress of research on the methods used in modifying the layered double hydroxides.
基金Supported by National Key Research and Development Program of China(Grant No.2020YFB2010500)National Natural Science Foundation of China(Grant Nos.51975305,52105457)Shandong Provincial Natural Science Foundation of China(Grant No.ZR2020KE027).
文摘Cutting fluid is crucial in ensuring surface quality and machining accuracy during machining.However,traditional mineral oil-based cutting fluids no longer meet modern machining’s health and environmental protection require-ments.As a renewable,pollution-free alternative with excellent processing characteristics,vegetable oil has become an inevitable replacement.However,vegetable oil lacks oxidation stability,extreme pressure,and antiwear proper-ties,which are essential for machining requirements.The physicochemical characteristics of vegetable oils and the improved methods’application mechanism are not fully understood.This study aims to investigate the effects of viscosity,surface tension,and molecular structure of vegetable oil on cooling and lubricating properties.The mechanisms of autoxidation and high-temperature oxidation based on the molecular structure of vegetable oil are also discussed.The study further investigates the application mechanism and performance of chemical modification and antioxidant additives.The study shows that the propionic ester of methyl hydroxy-oleate obtained by epoxidation has an initial oxidation temperature of 175℃.The application mechanism and extreme pressure performance of conventional extreme pressure additives and nanoparticle additives were also investigated to solve the problem of insufficient oxidation resistance and extreme pressure performance of nanobiological lubricants.Finally,the study discusses the future prospects of vegetable oil for chemical modification and nanoparticle addition.The study provides theoretical guidance and technical support for the industrial application and scientific research of vegetable oil in the field of lubrication and cooling.It is expected to promote sustainable development in the manufacturing industry.
基金This work was supported by the Young Scientist & Technician Creation Item sponsored by Fujian Province (No. 2002J021)and Scientific Research Fund Sponsored by Huaqiao University.
文摘The chemical modification of the surface of calcium alginate gel beads (CAGB) via grafting copolymerization with vinyl acetate (VAc) was studied. The optimum reaction conditions with activation and graft copolymerization two steps were explored. First, 5 grams CAGB with 2.5 mm initial diameter was initiated with 0.0493 mol/L K2S2O8 at 51 °C for 30 min in 15 mL 1 % PVA/H2O. Then 4.34 moi/L VAc was added dropwise and the reaction was allowed to proce at 48 °C for 3 h. The grafting efficiency could come up to 30%. It was found the stability of modified CAGB in the air and in electrolyte solutions was greatly improved.
文摘Tryptophan(Trp) residues in a pullulanase were modified by N-bromosuccinimide(NBS). The results of the Spande method indicate that there are 18 Trp residues in the pullulanase and nine of them are located on the surface af the enzyme. Three of these Trp residues are nonessential residues which show the fastest reaction rate according to the Zou's plot. Two of the seven relative faster reacting residues are essential for the activity of the enzyme. The other eight are the slowest in the reaction rate or non-reactive residues for the reaction. The fluorescence and circular dichroism(CD) spectra of the pullulanase have been changed after the reaction with NBS. Potassium iodide(KI) and acrylamide also have remarkable influences on the fluorescence spectra of the pullulanase.
基金Supported by the National Basic Research Program of China(No.2007CB216408)the National Natural Science Foundation of China(No.50602020)+1 种基金the Program for Outstanding Young Teachers in Lanzhou University of Technology China (No.Q200803)
文摘Chemically modified ordered mesoporous carbon CMK-3 materials were prepared by means of an easy wet-oxidative method in 2 mol/L nitric acid aqueous solution. A large amount of oxygen-containing functional groups were introduced onto the CMK-3 surface. Modified CMK-3(m-CMK-3) and aniline monomer were polymerized via an in situ chemical oxidative polymerization method. Morphological characterizations of m-CMK-3/PANI (polyaniline) composites were carried out via field emission scanning electron microscopy(SEM). Their electrochemical properties were investigated with cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The m-CMK-3/PANI composites have excellent properties in capacitance, and the highest specific capacitance(SC) value was up to 489 F/g, suggesting their potential application in the electrode material for electrochemical capacitors.
文摘A linear alpha -D-(1-->3)-glucan, named PSG, was obtained from the spores of Ganoderma lucidum. The synthesis of positively and negatively charged polyelectrolytes from PSG was developed. Amine groups and carboxymethyl groups were introduced through nucleophilic substitution with 3-chloropropylamine or chloroacetic acid, respectively, Reaction conditions were varied to obtain insight into the influence of variables on the degree of substitution.
基金We highly acknowledge the University Grants Commission-Special Assistance Programme(UGC-SAP)-BSR SECTION for fellowship.
文摘Various azo compounds(Modified dyes)have been synthesised by chemical modification of areca nut extract(epicate-chin),a plant-based Polyphenolic compound to get semi-synthetic dyes.Three different primary amines namely p-nitro aniline,p-anisidine and aniline,were diazotized to form their corresponding diazonium salts which were further coupled with an areca nut extract.Preliminary characterization of the areca nut extract and the resultant azo compounds(Modified dyes)was carried out in terms of melting point,solubility tests,thin layer chromatography,UV-Visible and FTIR spectroscopy.These modified dyes were further applied on polyester and nylon fabrics and%dye exhaustion was evaluated.Dyed fabrics were further tested for their fastness properties such as wash fastness,rubbing fastness,light fastness and sublimation fastness.The results of the fastness tests indicate that,all the three modified dyes have good dyeability for polyester and nylon fabrics.The dyed fabrics were also tested for ultraviolet protection factor which showed very good ultraviolet protection.
基金National Natural Science Foundation of China(51373131)Fundamental Research Funds for the Central Universities(XDJK2016A017,XDJK2016C033,and WUT-2014-II-009)+1 种基金Project of Basic Science and Advanced Technology Research,Chongqing Science and Technology Commission(cstc2016,jcyjA0796)the Talent Project of Southwest University(SWU115034)
文摘Cellulose nanocrystals(CNCs) have been widely applied in biomaterials and show great biocompatibility and mechanical strength. In this review, the chemical reactions applied in CNC surface modification and their application in CNC based biomaterials are introduced. Furthermore, the conjugation of different functional molecules and nanostructures to the surface of CNCs are discussed, with focus on the binding modes, reaction conditions, and reaction mechanisms. With this introduction, we hope to provide a clear view of the strategies for surface modification of CNCs and their application in biomaterials, thus providing an overall picture of promising CNC-based biomaterials and their production.
文摘The hydrogen storage alloy electrode of Mm(NiCoMnAl) 5 was activated by etching the alloy in a hot concentrated KOH solution. The electrochemical measurement demonstrates that the modified alloy electrode can reach its stable capacity at the first charge/discharge cycle and also shows low overpotential, indicating full activation of the etched alloy material. It was found from ICP, SEM and EDAX analyses that the activation process leads to surface modification by reconstructing of a new electroactive surface.
文摘In the phosphate buffer solution of pH>7,the cysteine sensitized the electrochemiluminescence (ECL) of luminol.It could be modified on the surface of platinum electrode and furthermore adsorbing the luminol on its exterior to construct an ECL sensor.The ECL intensity of this sensor was strong enough and very stable.There wasn't obvious decrease of ECL intensity for thirty times of using in 48 hours with the relative standard deviation (RSD) of 0.98%.It could be used to determine some quenching effective molecules such as superoxide dismutase (SOD) with negative response upon the concentration range from 4.8 IU/ml to 57.6 IU/ml.
基金Supported by the National Natural Science Foundation of China(Nos 20072010 and 20572035) and the Science Foundation ofJilin University(Nos419070100087 and 01208006)
文摘Glutathione peroxidase(GPX) plays an important role in scavenging reactive oxygen species. A series of catalytic antibodies with GPX activity have been generated by the authors of' this study. To obtain humanized catalytic antibodies, the phage-displayed human antibody library was used to select novel antibodies by repetitive screening, Phage antibodies, scFv-B8 and scFv-H6 with the GSH-binding site, were obtained from the library by enzyme-linked immu- nosorbent assay(ELISA) analysis with 4 rounds of scelection against their respective haptens, S-2,4-dinitriphenyl t-butyl ester(GStI-s-DNP-Bu) and S-2,4-dinit,-iphenyl t-hexyl ester(GSH-s-I)NP-He). Nevertheless, several studies need to be condueted to determine whether scFv-B8 and seFv-tI6 possess GPX activity. 1'o enhance the speed of the selection, selenocysteine(Sec, the catalytic group of GPX) was incorporated directly into the phages, scFv-B8 and seFv-H6, by chemical mutation to form the phages Se-scFv-B8 and Se-scFv-H6. The GPX activities were found to be 3012 units/μmol and 2102 units/μmol, respectively. To improve the GPX activity of the phage Se-scFv-B8, DNA shuffling was used to construct a secondary library and another positive phage antibody scFv-B9 was screened out by another panning against GSH-s-DNP-Bu. When Sec was incorporated via chemical mutation into the phage antibody scFv-B9, its GPX activity reached 3560 units/μmol, which is 1.17-fold higher than the phage antibody Se-scFv-B8 and almost approached the order of magnitude of native GPX. The rapid selection is the prerequisite for generating humanized Se-seFv with GPX activity.
基金supported by the National Basic Program of China(Grant No.2013CB632101)the National Natural Science Foundation of China(Grant Nos.61222404 and 61474097)the Fundamental Research Funds for the Central Universities of China(Grant No.2014XZZX003-09)
文摘Silicene is a two-dimensional(2D) material, which is composed of a single layer of silicon atoms with sp2–sp3mixed hybridization. The sp2–sp3mixed hybridization renders silicene excellent reactive ability, facilitating the chemical modification of silicene. It has been demonstrated that chemical modification effectively enables the tuning of the properties of silicene. We now review all kinds of chemical modification methods for silicene, including hydrogenation, halogenation,organic surface modification, oxidation, doping and formation of 2D hybrids. The effects of these chemical modification methods on the geometrical, electronic, optical, and magnetic properties of silicene are discussed. The potential applications of chemically modified silicene in a variety of fields such as electronics, optoelectronics, and magnetoelectronics are introduced. We finally envision future work on the chemical modification of silicene for further advancing the development of silicene.
文摘Acetylacetone was firstly introduced into the aqueous media with the presence of aluminum sec-butoxide and pep-tizator. It was confirmed that the UV (ultraviolet) absorption band of acetylacetone underwent 14 nm of red-shift due to the formation of the six-membered ring of the complex between alumina and acetylacetone in the aqueous solution. It was also found that the chemical modification can be dissociated by the UV irradiation with a wavelength shorter than 286 nm as a result of the excitation of π-π* transition in the complex.
基金The authors were grateful to the National Natural Science Foundation of China(No.30470050)Natural Science Foundation of Shandong Province(No.z2005d02)for financial support,
文摘A novel lysozyme named β-1, 4-N, 6-O-diacetylmuramidase R2 was purified and characterized from Streptomyces griseus. The molecular weight of the enzyme was determined by MALDI-TOF-MS as 23.5 kDa. The N-terminal amino acid sequence was DTSGVQGIDVSHWQG. Chemical modification of β-1, 4-N, 6-O-diacetylmuramidase R2 indicated that sulfhydryl group and carbamidine of arginine residues are not essential for the activity of the enzyme, but lysine residues and imidazole of histidine residues are essential for the activity. The number of essential tryptophan and carboxyl groups was found that only one tryptophan residue and three carboxyl groups in the active site.
基金supported by the National Natural Science Foundation of China(No.81400680,No.31500723)the National Science Foundation of Tianjin(No.17JCQNJC12800)+1 种基金Tianjin Science and Technology Plan Project(No.14RCGFSY00147)International S&T Cooperation Program of China(No.2015DFG31850)
文摘The amino acid composition of the superoxide dismutase(SOD) from camellia pollen was measured and the tryptophan(Trp) residues were modified by using N-bromosuccinimide(NBS). The results show that there are 21 Trp residues in an SOD molecule and seven of which are located on the surface of the enzyme. By researching the fluorescence spectra of the native SOD and the modified SOD, we have found that the emission wavelength of Trp is at 335 nm and the fluorescence intensity will decrease when the enzyme is modified. The results also show that potassium iodide(KI) can significantly quench the fluorescence of the native SOD, but it has a less pronounced effect on the modified enzyme. Glycerin as a surface activation reagent can stabilize the fluorescence of the modified enzyme.
基金Supported by the Natural Science Foundation of Jilin Province( No.0 30 912 )
文摘The chemical modification of human plasminogen(HPg) was studied with 1-ethyl-3-(3- dimethyl aminopropyl) carbodiimide(EDC), N -acetylimidazole(NAI), 1,2-cyclohexanedione(CHD), chloramine T(Ch-T) and N -bromosuccinimide(NBS) as modifying reagents at its carboxyl group, tyrosine, arginine, methionine and tryptophan residues, respectively. The results indicate that tyrosine and arginine residues are not essential for HPg activity, while carboxyl groups, methionine and tryptophan residues are important for the activity of HPg. The Keech and Farrant′s kinetic analysis reveals that one tryptophan residue, one methionine residue and two carboxyl groups are essential for HPg activity.
基金The Hi-tech Research and Development Program of China(2002AA2Z3318)Guangdong Natural Science Foundation(010424)supported this study.
文摘A new product PEGylated rhaFGF was obtained by site-directed chemical modification.When compared with unmodified rhaFGF, PEGylated rhaFGF showed comparable bioactivity and superior stability at 37℃ in mouse serum and the stronger resistant potency to trypsin. This was accompanied by a substantial decreasing tmmunogenicity.Site-specific PEGylation of rhaFGF may increase its therapeutic potency in humans.
文摘Tryptophan(Trp)residues in pullulanase have been chemically modified with N-bromossuccinimide(NBS). The results of ultraviolet spectra indicated that there are 18 Trp residues in pullulanase and nine of them are located on the surface of the enzyme. Three of these Trp residues are none-essential residues which showed the fastest reaction speed by Zhou's plot. Two of the seven relative faster reacting residues are essential for the activity of the enzyme. The other eight are none-reactive residues with lowest reaction speed.
文摘This paper evaluates the adsorption capacity of chemically sugarcane bagasses with sodium hydroxide(SHS),citric acid(CAS),tartaric acid(TAS)and unmodified sugarcane bagasse(SB)for cadmium adsorption in water environment.The results prove adsorption capacity for Cd(II)increases after chemical modification and the adsorption fits perfectly with the Langmuir isotherm.CAS had the highest maximum adsorption capacity of 45.45 mg/g followed by TAS with 38.46 mg/g and SHS with 29.41 at optimum pH 5.0 and 120 minutes equilibrium time while 1 g SB removed 18.8 mg Cd(II)in the same conditions.The kinetics study of the process followed a pseudo-secondorder rate expression,that indicated a strong interaction between the biosorbents and adsorbate.The sugarcane bagasse and modified sugarcane bagasse were characterized by scanning electron microscopy(SEM)and Fourier transform infrared spectroscopy(FTIR)analysis.The chemical modification was confirmed by the presence of carboxyl and esters groups created at 1,738 cm-1.The estimation of acid groups in modified materials shows the enhancement of this group after modification.On the other hand,desorption studies showed the high leaching of cadmium ion from the biosorbent leading to the efficient reutilization of materials.