CuBe composite wires of 100 μm in diameter coated with a layer of NiCoP were prepared by a chemical plating method under DC current(CPUDC). The influences of DC current on coating morphology,deposition rate, composit...CuBe composite wires of 100 μm in diameter coated with a layer of NiCoP were prepared by a chemical plating method under DC current(CPUDC). The influences of DC current on coating morphology,deposition rate, composition, giant magneto-impedance(GMI) effect and magnetic properties were investigated.It was shown that the circumferential domain structure of coating layer was induced by the DC current going through the wires. A maximum GMI ratio of 870% was obtained in the composite wire prepared under 150 m A and tested at 180 k Hz. It is 30 times higher than that of the composite wire plated in the same condition by conventional chemical plating method, indicating that CPUDC is an easy and effective approach to obtain composite wires and its applications will be further extended on magnetic sensors.展开更多
The objective of present work is to study the thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid a...The objective of present work is to study the thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid along a semi-infinite moving porous plate embedded in a porous medium with the presence of pressure gradient, thermal radiation field and chemical reaction. It is assumed that the permeable plate is embedded in a uniform porous medium and moves with a constant velocity in the flow direction in the presence of a transverse magnetic field. It is also assumed that the free stream consists of a mean velocity, temperature and concentration over which are super imposed an exponentially varying with time. The equations of continuity, momentum, energy and diffusion, which govern the flow field, are solved by using a regular perturbation method. The behavior of the velocity, temperature, concentration, Skin-friction, rate of heat transfer and rate of mass transfer has been discussed for variations in the physical parameters. An increase in both Pr and R results a decrease in thermal boundary layer thickness. However, concentration decreases as Kr, Sc increase but it increases with an increase in both So and δ.展开更多
An analysis has been developed to study the unsteady free convection flow of an incompressible visco-elastic fluid on a continuously moving vertical porous plate in the presence of a first-order chemical reaction. The...An analysis has been developed to study the unsteady free convection flow of an incompressible visco-elastic fluid on a continuously moving vertical porous plate in the presence of a first-order chemical reaction. The governing equations are solved numerically using an implicit finite difference technique. The obtained numerical solutions are compared with the analytical solutions. The velocity profiles are presented. A parametric analysis is performed to illustrate the influences of the visco-elastic parameter, the dimensionless chemical reaction parameter, and the plate moving velocity on the steady state velocity profiles, the time dependent friction coefficient, the Nusselt number, and the Sherwood number.展开更多
In this study, an effective deposition of Ni-P alloy on polyester (PET) was proposed by a chemical plating method with PdCl2 solution and a chelating agent chitosan (CTS). As a critical step in chemical plating of...In this study, an effective deposition of Ni-P alloy on polyester (PET) was proposed by a chemical plating method with PdCl2 solution and a chelating agent chitosan (CTS). As a critical step in chemical plating of making electromagnetic shielding fabric, the optimized processing of textile chemical plating is the fabrics padded with 3 % acetic acid (HAc) solution containing 10 g/L CTS and 5.5 mL/L formaldehyde (HCHO) as cross-linking agent for 20 min at room temperature. The highest weight gain and the lowest surface resistance of the treated fabric were achieved by the optimum pretreatment method. The CTS-Pd PET fabrics were characterized by scanning electron microscopy (SEM), scanning probe microscope (SPM), and the glancing incident angle X-ray diffraction (XRD) pattern. The results showed that CTS acting as a chelating had effectively fixed Pd (H) ions. A uniform and continuous structure of Ni-P plating layer was obtained using the CTS pretreatment.展开更多
A numerical investigation of boundary layer mass transfer flow through an inclined plate with the effect of chemical reaction and thermal diffusion is presented in this study. The governing partial differential equati...A numerical investigation of boundary layer mass transfer flow through an inclined plate with the effect of chemical reaction and thermal diffusion is presented in this study. The governing partial differential equations (PDE) are transformed to a system of dimensionless non-similar coupled PDEs. The transformed, non-similar conservations equations (momentum balance equation, energy balance equation and concentration balance equation) are then solved using a numerical approach known as explicit finite difference method (EFDM). Basically EFDM introduced for the unsteadiness in the momentum, temperature, and concentration fluid fields is based on the time dependent fluid velocity, temperature and concentration of the boundary surface. During the course of discussion, it is found that the various parameters related to the problem influence the calculated resultant expressions. The computed numerical solution results for the velocity, temperature, and concentration distribution with the effect of various important dimensionless parameters (Grashof number, Modified Grashof number, Prandtl number, Schmidt number, Soret number, Dufour number, chemical reaction parameter and inclination parameter) entering into the problems are critically analyzed and discussed graphically. It can be seen that two physical phenomena chemical reaction and thermal diffusion can greatly effect on the boundary layer fluid flows through an inclined plate.展开更多
The heat transfer between two corresponding plates,disks,and concentric pipes has many applications,including water cleansing and lubrication.Furthermore,TiO_(2)-water-based nanofluids are used widely because it is us...The heat transfer between two corresponding plates,disks,and concentric pipes has many applications,including water cleansing and lubrication.Furthermore,TiO_(2)-water-based nanofluids are used widely because it is useful for operating and controlling the temperature,especially in photovoltaic technology and solar panels.Motivated by these applications,the current study is based on the nanoparticle aggregation effect on magnetohydrodynamics(MHD)flow via rotating parallel plates with the chemical reaction.To achieve maximum heat transportation,the Bruggeman model is used to adapt the Maxwell model.Also,melting and thermal radiation effects are considered in the modeling to discuss heat transport.The Runge-Kutta-Fehlberg 4th−5th order method is used to attain numerical solutions.The main focus of this study is to see the thermodynamic behavior considering several aspects of nanoparticle aggregation.The heat transfer rate between the parallel plates is enhanced by improving the thermophoresis,radiation,and Brownian motion parameters.The rise in Schmidt number and chemical reaction rate parameter decreases the concentration distribution.This study will be helpful in enhancing the thermal efficiency of photovoltaic technology in solar plates,water purifying,thermal management of electronic devices,designing effective cooling systems,and other sustainable technologies.展开更多
The current research processes of electroplating and electroless Ni-P alloy plating on magnesium alloys were reviewed. Theoretically,the reason for difficulties in electroplating and electroless plating on magnesium a...The current research processes of electroplating and electroless Ni-P alloy plating on magnesium alloys were reviewed. Theoretically,the reason for difficulties in electroplating and electroless plating on magnesium alloys was given.The zinc immersion, copper immersion,direct electroless Ni-P alloy plating and electroplating and electroless plating on magnesium alloys prepared by chemical conversion coating were presented in detail.Especially,the research development of magnesium alloy AZ91 and AZ31 was discussed briefly.Based on the analysis,the existing problems and future research directions were then given.展开更多
There are lots of residual nickel and organic compounds in the spent electroless nickel plating bath. It not only wastes resource but also causes environmental pollution if the wastewater is discharged without treatme...There are lots of residual nickel and organic compounds in the spent electroless nickel plating bath. It not only wastes resource but also causes environmental pollution if the wastewater is discharged without treatment. In this paper, electrolytic method and reduction method for treating spent electroless nickel plating bath were compared. The factors studied included reaction time, pH, temperature, effectiveness and cost. It was found that the recovery rate of nickel by reduction was 99.9% under the condition ofpH 6, 50℃ for 10 min. The purity of reclaimed nickel was 66.1%. This treatment needed about 16 g NaBH4 for a liter spent solution, which cost RMB 64 Yuan. For electrolysis method, with pH 7.6, 80℃, 0.45 A (current intensity) for 2 h, the recovery rate reached 97.3%. The purity was 88.5% for the reclaimed nickel. Moreover, it was found that through electrolysis, the value of TOC (Total Organic Carbon) decreased from 114 to 3.08 g·L^-1 with removal rate of 97.3%. The main cost of electrolysis came from electric energy. It cost about 0.09 kWh (less than RMB 0.1 Yuan) per liter wastewater. Compared with reduction, electrolysis had more advantages, so the priority of selection should be given to the electrolysis method for the treatment of spent electroless nickel plating bath.展开更多
Ni-P alloy was chemically plated on Al2O3 ceramics to produce uniform alloy coatings at tem- peratures below 70℃. Cu metal was electroplated onto the Ni-P coating to facilitate the soldering and shorten the chemica...Ni-P alloy was chemically plated on Al2O3 ceramics to produce uniform alloy coatings at tem- peratures below 70℃. Cu metal was electroplated onto the Ni-P coating to facilitate the soldering and shorten the chemical plating time. Then, the electroplated ceramic specimens were soldered with 60 wt.% Sn-40 wt.% Pb solder in active colophony. The highest shear strength was acquired after the heat treatment at 170℃ for 15 min. The joint fractures mostly propagated along the interface between the ceramics and the Ni-P coating, with some fracture in both the ceramics and the Ni-P coating near the interface and some along the interface between the Cu and Ni-P coatings. The results show that ceramic surface roughness and the chemical plating parameters influence the coating quality, and that suitable heat treatment before the soldering also improves the adhesion between the ceramics and Ni-P coatings, thus strengthening the joints.展开更多
基金supported by Shanghai Automotive Science and Technology Development Foundation (SAISTDF/12-06)East China Normal University Program (78210142, 78210183)+1 种基金Large Instruments Open Foundation of East China Normal University (201369)National Natural Science Foundation of China(51302085)
文摘CuBe composite wires of 100 μm in diameter coated with a layer of NiCoP were prepared by a chemical plating method under DC current(CPUDC). The influences of DC current on coating morphology,deposition rate, composition, giant magneto-impedance(GMI) effect and magnetic properties were investigated.It was shown that the circumferential domain structure of coating layer was induced by the DC current going through the wires. A maximum GMI ratio of 870% was obtained in the composite wire prepared under 150 m A and tested at 180 k Hz. It is 30 times higher than that of the composite wire plated in the same condition by conventional chemical plating method, indicating that CPUDC is an easy and effective approach to obtain composite wires and its applications will be further extended on magnetic sensors.
文摘The objective of present work is to study the thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid along a semi-infinite moving porous plate embedded in a porous medium with the presence of pressure gradient, thermal radiation field and chemical reaction. It is assumed that the permeable plate is embedded in a uniform porous medium and moves with a constant velocity in the flow direction in the presence of a transverse magnetic field. It is also assumed that the free stream consists of a mean velocity, temperature and concentration over which are super imposed an exponentially varying with time. The equations of continuity, momentum, energy and diffusion, which govern the flow field, are solved by using a regular perturbation method. The behavior of the velocity, temperature, concentration, Skin-friction, rate of heat transfer and rate of mass transfer has been discussed for variations in the physical parameters. An increase in both Pr and R results a decrease in thermal boundary layer thickness. However, concentration decreases as Kr, Sc increase but it increases with an increase in both So and δ.
文摘An analysis has been developed to study the unsteady free convection flow of an incompressible visco-elastic fluid on a continuously moving vertical porous plate in the presence of a first-order chemical reaction. The governing equations are solved numerically using an implicit finite difference technique. The obtained numerical solutions are compared with the analytical solutions. The velocity profiles are presented. A parametric analysis is performed to illustrate the influences of the visco-elastic parameter, the dimensionless chemical reaction parameter, and the plate moving velocity on the steady state velocity profiles, the time dependent friction coefficient, the Nusselt number, and the Sherwood number.
文摘In this study, an effective deposition of Ni-P alloy on polyester (PET) was proposed by a chemical plating method with PdCl2 solution and a chelating agent chitosan (CTS). As a critical step in chemical plating of making electromagnetic shielding fabric, the optimized processing of textile chemical plating is the fabrics padded with 3 % acetic acid (HAc) solution containing 10 g/L CTS and 5.5 mL/L formaldehyde (HCHO) as cross-linking agent for 20 min at room temperature. The highest weight gain and the lowest surface resistance of the treated fabric were achieved by the optimum pretreatment method. The CTS-Pd PET fabrics were characterized by scanning electron microscopy (SEM), scanning probe microscope (SPM), and the glancing incident angle X-ray diffraction (XRD) pattern. The results showed that CTS acting as a chelating had effectively fixed Pd (H) ions. A uniform and continuous structure of Ni-P plating layer was obtained using the CTS pretreatment.
文摘A numerical investigation of boundary layer mass transfer flow through an inclined plate with the effect of chemical reaction and thermal diffusion is presented in this study. The governing partial differential equations (PDE) are transformed to a system of dimensionless non-similar coupled PDEs. The transformed, non-similar conservations equations (momentum balance equation, energy balance equation and concentration balance equation) are then solved using a numerical approach known as explicit finite difference method (EFDM). Basically EFDM introduced for the unsteadiness in the momentum, temperature, and concentration fluid fields is based on the time dependent fluid velocity, temperature and concentration of the boundary surface. During the course of discussion, it is found that the various parameters related to the problem influence the calculated resultant expressions. The computed numerical solution results for the velocity, temperature, and concentration distribution with the effect of various important dimensionless parameters (Grashof number, Modified Grashof number, Prandtl number, Schmidt number, Soret number, Dufour number, chemical reaction parameter and inclination parameter) entering into the problems are critically analyzed and discussed graphically. It can be seen that two physical phenomena chemical reaction and thermal diffusion can greatly effect on the boundary layer fluid flows through an inclined plate.
基金Large research project(RGP2/159/45)supported by the Deanship of Research and Graduate Studies at King Khalid University,Saudi Arabia。
文摘The heat transfer between two corresponding plates,disks,and concentric pipes has many applications,including water cleansing and lubrication.Furthermore,TiO_(2)-water-based nanofluids are used widely because it is useful for operating and controlling the temperature,especially in photovoltaic technology and solar panels.Motivated by these applications,the current study is based on the nanoparticle aggregation effect on magnetohydrodynamics(MHD)flow via rotating parallel plates with the chemical reaction.To achieve maximum heat transportation,the Bruggeman model is used to adapt the Maxwell model.Also,melting and thermal radiation effects are considered in the modeling to discuss heat transport.The Runge-Kutta-Fehlberg 4th−5th order method is used to attain numerical solutions.The main focus of this study is to see the thermodynamic behavior considering several aspects of nanoparticle aggregation.The heat transfer rate between the parallel plates is enhanced by improving the thermophoresis,radiation,and Brownian motion parameters.The rise in Schmidt number and chemical reaction rate parameter decreases the concentration distribution.This study will be helpful in enhancing the thermal efficiency of photovoltaic technology in solar plates,water purifying,thermal management of electronic devices,designing effective cooling systems,and other sustainable technologies.
文摘The current research processes of electroplating and electroless Ni-P alloy plating on magnesium alloys were reviewed. Theoretically,the reason for difficulties in electroplating and electroless plating on magnesium alloys was given.The zinc immersion, copper immersion,direct electroless Ni-P alloy plating and electroplating and electroless plating on magnesium alloys prepared by chemical conversion coating were presented in detail.Especially,the research development of magnesium alloy AZ91 and AZ31 was discussed briefly.Based on the analysis,the existing problems and future research directions were then given.
基金Supported by National Natural Science Foundation of China (59870469)Homecoming Foundation of Heilongjiang Province (LC06C04)Researcher Overseas Foundation of the Department of Education of Heilongjiang Province (1152hq19)
文摘There are lots of residual nickel and organic compounds in the spent electroless nickel plating bath. It not only wastes resource but also causes environmental pollution if the wastewater is discharged without treatment. In this paper, electrolytic method and reduction method for treating spent electroless nickel plating bath were compared. The factors studied included reaction time, pH, temperature, effectiveness and cost. It was found that the recovery rate of nickel by reduction was 99.9% under the condition ofpH 6, 50℃ for 10 min. The purity of reclaimed nickel was 66.1%. This treatment needed about 16 g NaBH4 for a liter spent solution, which cost RMB 64 Yuan. For electrolysis method, with pH 7.6, 80℃, 0.45 A (current intensity) for 2 h, the recovery rate reached 97.3%. The purity was 88.5% for the reclaimed nickel. Moreover, it was found that through electrolysis, the value of TOC (Total Organic Carbon) decreased from 114 to 3.08 g·L^-1 with removal rate of 97.3%. The main cost of electrolysis came from electric energy. It cost about 0.09 kWh (less than RMB 0.1 Yuan) per liter wastewater. Compared with reduction, electrolysis had more advantages, so the priority of selection should be given to the electrolysis method for the treatment of spent electroless nickel plating bath.
基金Supported by the Innovation Foundation of Aerospace Science and Technology of China and the Young Teacher Foundation of the Department of Mechanical Engineering and the Key Laboratory Open Fund of Tsinghua University
文摘Ni-P alloy was chemically plated on Al2O3 ceramics to produce uniform alloy coatings at tem- peratures below 70℃. Cu metal was electroplated onto the Ni-P coating to facilitate the soldering and shorten the chemical plating time. Then, the electroplated ceramic specimens were soldered with 60 wt.% Sn-40 wt.% Pb solder in active colophony. The highest shear strength was acquired after the heat treatment at 170℃ for 15 min. The joint fractures mostly propagated along the interface between the ceramics and the Ni-P coating, with some fracture in both the ceramics and the Ni-P coating near the interface and some along the interface between the Cu and Ni-P coatings. The results show that ceramic surface roughness and the chemical plating parameters influence the coating quality, and that suitable heat treatment before the soldering also improves the adhesion between the ceramics and Ni-P coatings, thus strengthening the joints.