期刊文献+
共找到21,881篇文章
< 1 2 250 >
每页显示 20 50 100
Computational Mass Transfer Method for Chemical Process Simulation 被引量:10
1
作者 袁希钢 余国琮 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第4期497-502,共6页
The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are als... The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are also discussed. 展开更多
关键词 computational mass transfer turbulent mass transfer diffusivity chemical process simulation
下载PDF
SDG-based Model Validation in Chemical Process Simulation 被引量:7
2
作者 张贝克 许欣 +1 位作者 马昕 吴重光 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第8期876-885,共10页
Signed direct graph (SDG) theory provides algorithms and methods that can be applied directly to chemical process modeling and analysis to validate simulation models, and is a basis for the development of a software e... Signed direct graph (SDG) theory provides algorithms and methods that can be applied directly to chemical process modeling and analysis to validate simulation models, and is a basis for the development of a software environment that can automate the validation activity. This paper is concentrated on the pretreatment of the model validation. We use the validation scenarios and standard sequences generated by well-established SDG model to validate the trends fitted from the simulation model. The results are helpful to find potential problems, assess possible bugs in the simulation model and solve the problem effectively. A case study on a simulation model of boiler is presented to demonstrate the effectiveness of this method. 展开更多
关键词 model validation signed direct graph chemical process qualitative trend
下载PDF
Numerical simulation of pore-scale flow in chemical flooding process 被引量:3
3
作者 Xiaobo Li,~(1,a) Shuhong Wu,~1 Jie Song,~1 Hua Li,~1 and Shuping Wang~2 1.Research Institute of Petroleum Exploration & Development of Petrochina,Beijing 100083,China 2)Petroleum Exploration & Production Research Institute of Sinopec,Beijing 100083,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第2期68-72,共5页
Chemical flooding is one of the effective technologies to increase oil recovery of petroleum reservoirs after water flooding.Above the scale of representative elementary volume(REV), phenomenological modeling and nume... Chemical flooding is one of the effective technologies to increase oil recovery of petroleum reservoirs after water flooding.Above the scale of representative elementary volume(REV), phenomenological modeling and numerical simulations of chemical flooding have been reported in literatures,but the studies alike are rarely conducted at the pore-scale,at which the effects of physicochemical hydrodynamics are hardly resolved either by experimental observations or by traditional continuum-based simulations.In this paper,dissipative particle dynamics(DPD),one of mesoscopic fluid particle methods,is introduced to simulate the pore-scale flow in chemical flooding processes.The theoretical background,mathematical formulation and numerical approach of DPD are presented.The plane Poiseuille flow is used to illustrate the accuracy of the DPD simulation,and then the processes of polymer flooding through an oil-wet throat and a water-wet throat are studies, respectively.The selected parameters of those simulations are given in details.These preliminary results show the potential of this novel method for modeling the physicochemical hydrodynamics at the pore scale in the area of chemical enhanced oil recovery. 展开更多
关键词 chemical flooding pore-scale flow dissipative particle dynamics mesoscopic simulation enhanced oil recovery
下载PDF
Chemical simulation teaching system based on virtual reality and gesture interaction
4
作者 Dengzhen LU Hengyi LI +2 位作者 Boyu QIU Siyuan LIU Shuhan QI 《虚拟现实与智能硬件(中英文)》 EI 2024年第2期148-168,共21页
Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based ... Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based on virtual reality and gesture interaction.Methods The parameters of the models were obtained through actual investigation,whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine.By establishing an interface for the physics engine,gesture interaction hardware,and virtual reality(VR)helmet,a highly realistic chemical experiment environment was created.Using code script logic,particle systems,as well as other systems,chemical phenomena were simulated.Furthermore,we created an online teaching platform using streaming media and databases to address the problems of distance teaching.Results The proposed system was evaluated against two mainstream products in the market.In the experiments,the proposed system outperformed the other products in terms of fidelity and practicality.Conclusions The proposed system which offers realistic simulations and practicability,can help improve the high school chemistry experimental education. 展开更多
关键词 chemical experiment simulation Gesture interaction Virtual reality Model establishment process control Streaming media DATABASE
下载PDF
Causal temporal graph attention network for fault diagnosis of chemical processes
5
作者 Jiaojiao Luo Zhehao Jin +3 位作者 Heping Jin Qian Li Xu Ji Yiyang Dai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期20-32,共13页
Fault detection and diagnosis(FDD)plays a significant role in ensuring the safety and stability of chemical processes.With the development of artificial intelligence(AI)and big data technologies,data-driven approaches... Fault detection and diagnosis(FDD)plays a significant role in ensuring the safety and stability of chemical processes.With the development of artificial intelligence(AI)and big data technologies,data-driven approaches with excellent performance are widely used for FDD in chemical processes.However,improved predictive accuracy has often been achieved through increased model complexity,which turns models into black-box methods and causes uncertainty regarding their decisions.In this study,a causal temporal graph attention network(CTGAN)is proposed for fault diagnosis of chemical processes.A chemical causal graph is built by causal inference to represent the propagation path of faults.The attention mechanism and chemical causal graph were combined to help us notice the key variables relating to fault fluctuations.Experiments in the Tennessee Eastman(TE)process and the green ammonia(GA)process showed that CTGAN achieved high performance and good explainability. 展开更多
关键词 chemical processes Safety Fault diagnosis Causal discovery Attention mechanism Explainability
下载PDF
Laboratory Simulation of the Formation Process of Surface Geochemical Anomalies Applied to Hydrocarbon Exploration 被引量:2
6
作者 WANG Guojian TANG Yuping +3 位作者 CHENG Tongjin TANG Junhong FAN Ming LU Li 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第6期2149-2162,共14页
The formation mechanisms and processes of geochemical anomalies used as proxies in surface geochemistry exploration (SGE) have not been well understood. Previous studies cannot realize 3D measurement of microseeping... The formation mechanisms and processes of geochemical anomalies used as proxies in surface geochemistry exploration (SGE) have not been well understood. Previous studies cannot realize 3D measurement of microseeping hydrocarbons from reservoirs to the surface, which made it difficult to understand the features and pathways of deep hydrocarbon microseepages. Understanding the processes of hydrocarbon microseepages will contribute to the acceptance and effectiveness of surface geochemistry. Based on a simplified geological model of hydrocarbon microseepages, including hydrocarbon reservoir, direct caprock, overlying strata and Quaternary sediments, this work established a 3D experimental system to simulate the mechanisms and processes of deep hydrocarbon microseepes extending to the surface. The dispersive halos of microseeping hydrocarbons in the subsurface were adequately described by using this 3D experimental system. Results indicate that different migration patterns of hydrocarbons above the point gas source within the simulated caprock and overlying strata can be reflected by the ratio of i-butane to n-butane (i-C4/n-C4), which follow diffusion and infiltration (buoyancy) mechanisms. This is not the case for vertical measurement lines far from the point gas source. A vertical gas flow in the form of a plume was found during hydrocarbon microseepage. For sampling methods, the high-density grid sampling is favorable for delineating prospecting targets. Hydrocarbon infiltration or buoyancy flow occurs in the zones of infiltration clusters, coupling with a diffusion mechanism at the top of the water table and forming surface geochemical anomalies. These results are significant in understanding hydrocarbon microseepage and interpreting SGE data. 展开更多
关键词 hydrocarbon microseepage surface geochemical anomaly 3D measurement laboratory simulation migration mechanisms and processes
下载PDF
Big Data Application Simulation Platform Design for Onboard Distributed Processing of LEO Mega-Constellation Networks
7
作者 Zhang Zhikai Gu Shushi +1 位作者 Zhang Qinyu Xue Jiayin 《China Communications》 SCIE CSCD 2024年第7期334-345,共12页
Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In exist... Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes. 展开更多
关键词 big data application Hadoop LEO mega-constellation multidimensional simulation onboard distributed processing
下载PDF
Process Optimization of Cu-en/AP Composite Microspheres Preparation by Electrostatic Spray Method Based on ANSYS Simulation
8
作者 LIU Lei HU Tian-yuan +1 位作者 SONG Ming-jun JI Wei 《火炸药学报》 EI CAS CSCD 北大核心 2024年第10期899-909,I0002,共12页
To investigate the process optimizationof Cu-en/AP composite microspheres preparation via electrostatic spraying,and to reveal the effects of droplet properties and flow rate variations on the experimental results dur... To investigate the process optimizationof Cu-en/AP composite microspheres preparation via electrostatic spraying,and to reveal the effects of droplet properties and flow rate variations on the experimental results during the electrostatic spraying process,the prepared process parameters of Cu-en/AP composite microspheres by electrostatic spray method under the orthogonal experimental design simulated by ANSYS(Fluent).The influence of flow rate,solvent ratio,and solid mass on the experimental results is examined using a controlled variable method.The results indicate that under the conditions of a flow rate of 2.67×10^(-3)kg/s an acetone-to-deionized water ratio of 1.5∶1.0,and a solid mass of 200 mg,the theoretical particle size of the composite microspheres can reach e nanoscale.Droplet trajectories in the electric field remain stable without significant deviation.The simulation results show that particle diameter decreases with increasing flow rate,with the trend leveling off around a flow rate of 1×10^(-3)kg/s.As the solvent ratio increases(with higher acetone content),particle diameter initially decreases,reaching a minimum around a ratio of 1.5∶1.0 before gradually increasing.Increasing the solid mass also reduces the particle diameter,with a linear increase in diameter observed at around 220 mg.Cu-en/AP composite microspheres with nanoscale dimensions were confirmed under these conditions by the final SEM images. 展开更多
关键词 physical chemistry fluent simulation ammonium perchlorate composite microspheres electrostatic spray process conditions
下载PDF
Simulation of Fracture Process of Lightweight Aggregate Concrete Based on Digital Image Processing Technology
9
作者 Safwan Al-sayed Xi Wang Yijiang Peng 《Computers, Materials & Continua》 SCIE EI 2024年第6期4169-4195,共27页
The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is a... The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis. 展开更多
关键词 Digital image processing lightweight aggregate concrete mesoscopic model numerical simulation fracture analysis bending beams
下载PDF
Monte Carlo Simulation of Electron Velocity Distribution and Gas Phase Process in Electron-Assisted Chemical Vapor Deposition 被引量:1
10
作者 董丽芳 马博琴 +1 位作者 尚勇 王志军 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第3期2845-2848,共4页
The gas phase process of diamond film deposition from CH4/H2 gas mixture by electron-assisted chemical vapor deposition is simulated by the Monte-Carlo method. The electron velocity distribution under different E/P (t... The gas phase process of diamond film deposition from CH4/H2 gas mixture by electron-assisted chemical vapor deposition is simulated by the Monte-Carlo method. The electron velocity distribution under different E/P (the ratio of the electric field to gas pressure) is obtained, and the velocity profile is asymmetric. The variation of the number density of CH3 and H with different CH4 concentrations and gas pressure is investigated, and the optimal experimental parameters are obtained: the gas pressure is in the range of 2.5 kPa - 15 kPa and the CH4 concentration is in the range of 0.5% - 1%. The energy carried by the fragment CH3 as the function of the experiment parameters is investigated to explain the diamond growth at low temperature. These results will be helpful to the selection of optimum experimental conditions for high quality diamond films deposition in EACVD and the modeling of plasma chemical vapor deposition. 展开更多
关键词 gas phase reactions electron-assisted chemical vapor deposition Monte Carlo simulation diamond film
下载PDF
Construction of a Virtual Simulation Practice Teaching System of the Chemical Industry Under the Background of Integration of Production and Education
11
作者 Lixia Wang 《Journal of Contemporary Educational Research》 2024年第5期103-109,共7页
With the development of the integration of production and education,chemical engineering and technology education is facing many new challenges and opportunities.The construction of a chemical virtual simulation pract... With the development of the integration of production and education,chemical engineering and technology education is facing many new challenges and opportunities.The construction of a chemical virtual simulation practice teaching system under the background of integration of production and education aims to improve students’learning efficiency and innovation ability with the help of virtual simulation technology,so as to meet the needs of future industrial development.This paper discusses the significance of the construction of the system,analyzes the difficulties and challenges that may be encountered in the construction process,and evaluates the effective strategies to strengthen the construction of the system.Through the introduction of virtual simulation technology,students can improve their practical skills and innovation ability,and better adapt to the development needs of industrialization and informatization. 展开更多
关键词 Integration of production and education chemical virtual simulation practice Teaching system
下载PDF
Linking a Simulated Annealing Based Optimization Model with PHT3D Simulation Model for Chemically Reactive Transport Processes to Optimally Characterize Unknown Contaminant Sources in a Former Mine Site in Australia
12
作者 Bithin Datta Claire Petit +2 位作者 Marine Palliser Hamed K. Esfahani Om Prakash 《Journal of Water Resource and Protection》 2017年第5期432-454,共23页
Historical mining activities often lead to continuing wide spread contaminants in both groundwater and surface water in previously operational mine site areas. The contamination may continue for many years after closi... Historical mining activities often lead to continuing wide spread contaminants in both groundwater and surface water in previously operational mine site areas. The contamination may continue for many years after closing down the mining activities. The essential first step for sustainable management of groundwater and development of remediation strategies is the unknown contaminant source characterization. In a mining site, there are multiple species of contaminants involving complex geochemical processes. It is difficult to identify the potential sources and pathways incorporating the chemically reactive multiple species of contaminants making the source characterization process more challenging. To address this issue, a reactive transport simulation model PHT3D is linked to a Simulated Annealing based the optimum decision model. The numerical simulation model PHT3D is utilized for numerically simulating the reactive transport process involving multiple species in the former mine site area. The simulation results from the calibrated PHT3D model are illustrated, with and without incorporating the chemical reactions. These comparisons show the utility of using a reactive, geochemical transport process’ simulation model. Performance evaluation of the linked simulation optimization methodology is evaluated for a contamination scenario in a former mine site in Queensland, Australia. These performance evaluation results illustrate the applicability of linked simulation optimization model to identify the source characteristics while using PHT3D as a numerical reactive chemical species’ transport simulation model for the hydro-geochemically complex aquifer study area. 展开更多
关键词 Groundwater CONTAMINATION Source Characterization PHT3D Linked simulation Optimization Methodology chemically Reactive Transport simulation MINE SITE CONTAMINATION Simulated Annealing
下载PDF
Chemical etching process of copper electrode for bioelectrical impedance technology 被引量:2
13
作者 周伟 宋嵘 +4 位作者 蒋乐伦 许文平 梁国开 程德才 刘灵蛟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1501-1506,共6页
In order to obtain bioelectrical impedance electrodes with high stability, the chemical etching process was used to fabricate the copper electrode with a series of surface microstructures. By changing the etching proc... In order to obtain bioelectrical impedance electrodes with high stability, the chemical etching process was used to fabricate the copper electrode with a series of surface microstructures. By changing the etching processing parameters, some comparison experiments were performed to reveal the influence of etching time, etching temperature, etching liquid concentration, and sample sizes on the etching rate and surface microstructures of copper electrode. The result shows that the etching rate is decreased with increasing etching time, and is increased with increasing etching temperature. Moreover, it is found that the sample size has little influence on the etching rate. After choosing the reasonable etching liquid composition (formulation 3), the copper electrode with many surface microstructures can be obtained by chemical etching process at room temperature for 20 rain. In addition, using the alternating current impedance test of electrode-electrode for 24 h, the copper electrode with a series of surface microstructures fabricated by the etching process presents a more stable impedance value compared with the electrocardiograph (ECG) electrode, resulting from the reliable surface contact of copper electrode-electrode. 展开更多
关键词 bioelectrical impedance copper electrode chemical etching surface microstructures processing parameters
下载PDF
Photolithography Process Simulation for Integrated Circuits and Microelectromechanical System Fabrication 被引量:1
14
作者 周再发 黄庆安 李伟华 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第4期705-711,共7页
Simulations of photoresist etching,aerial image,exposure,and post-bake processes are integrated to obtain a photolithography process simulation for microelectromechanical system(MEMS) and integrated circuit(IC) fa... Simulations of photoresist etching,aerial image,exposure,and post-bake processes are integrated to obtain a photolithography process simulation for microelectromechanical system(MEMS) and integrated circuit(IC) fabrication based on three-dimensional (3D) cellular automata(CA). The simulation results agree well with available experimental results. This indicates that the 3D dynamic CA model for the photoresist etching simulation and the 3D CA model for the post-bake simulation could be useful for the monolithic simulation of various lithography processes. This is determined to be useful for the device-sized fabrication process simulation of IC and MEMS. 展开更多
关键词 cellular automata process simulation photolithography simulation MODEL TCAD
下载PDF
Material driven workability simulation by FEM including 3D processing maps for magnesium alloy 被引量:2
15
作者 刘娟 李居强 +2 位作者 崔振山 欧立安 阮立群 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期3011-3019,共9页
The three-dimensional (3D) processing maps considering strain based on the two-dimensional (2D) processing maps proposed by PRASAD can describe the distribution of the efficiency of power dissipation and flow inst... The three-dimensional (3D) processing maps considering strain based on the two-dimensional (2D) processing maps proposed by PRASAD can describe the distribution of the efficiency of power dissipation and flow instability regions at various temperatures, strain rates and strains, which exhibit intrinsic workability related to material itself. Finite element (FE) simulation can obtain the distribution of strain, strain rate, temperature and die filling status, which indicates state-of-stress (SOS) workability decided by die shape and different processing conditions. On the basis of this, a new material driven analysis method for hot deformation was put forward by the combination of FE simulation with 3D processing maps, which can demonstrate material workability of the entire hot deformation process including SOS workability and intrinsic workability. The hot forging process for hard-to-work metal magnesium alloy was studied, and the 3D thermomechanical FE simulation including 3D processing maps of complex hot forging spur bevel gear was first conducted. The hot forging experiments were carried out. The results show that the new method is reasonable and suitable to determine the aoorooriate nrocess narameters. 展开更多
关键词 material driven workability simulation 3D processing maps magnesium alloy hot forging
下载PDF
Molecular Dynamic Simulation on the Absorbing Process of Isolating and Coating of α-olefin Drag Reducing Polymer 被引量:1
16
作者 李冰 盛翔 +6 位作者 邢文国 董桂霖 刘永军 张长桥 陈祥俊 周宁宁 秦占波 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第6期630-636,745,共8页
The absorbing process in isolating and coating process of α-olefin drag reducing polymer was studied by molecular dynamic simulation method, on basis of coating theory of α-olefin drag reducing polymer particles wit... The absorbing process in isolating and coating process of α-olefin drag reducing polymer was studied by molecular dynamic simulation method, on basis of coating theory of α-olefin drag reducing polymer particles with polyurethane as coating material. The distributions of sodium laurate, sodium dodeeyl sulfate, and sodium dodeeyl benzene sulfonate on the surface of α-olefin drag reducing polymer particles were almost the same, but the bending degrees of them were obviously different. The bending degree of SLA molecules was greater than those of the other two surfactant molecules. Simulation results of absorbing and accumulating structure showed that, though hydrophobie properties of surfactant molecules were almost the same, water density around long chain sulfonate sodium was bigger than that around alkyl sulfate sodium. This property goes against useful absorbing and accumulating on the surface of α-olefin drag reducing polymer particles; simulation results of interactions of different surfactant and multiple hydroxyl compounds on surface of particles showed that, interactions of different surfaetant and one kind of multiple hydroxyl compound were similar to those of one kind of surfaetant and different multiple hydroxyl compounds. These two contrast types of interactions also exhibited the differences of absorbing distribution and closing degrees to surface of particles. The sequence of closing degrees was derived from simulation; control step of addition polymerization interaction in coating process was absorbing mass transfer process, so the more closed to surface of particle the multiple hydroxyl compounds were, the easier interactions With isoeyanate were. Simulation results represented the compatibility relationship between surfactant and multiple hydroxyl compounds. The isolating and coating processes of α-olefin drag reducing polymer were further understood on molecule and atom level through above simulation research, and based on the simulation, a referenced theoretical basis was provided for practical optimal selection and experimental preparation of α-olefin drag reducing polymer particles suspension isolation agent. 展开更多
关键词 Molecular dynamic simulation Coating process Multiple hydroxyl compound Addition polymerization Optimal selection Isolation agent
下载PDF
Mechanism of Formation of the Ozone Valley over the Tibetan Plateau in Summer-Transport and Chemical Process of Ozone 被引量:14
17
作者 刘煜 李维亮 +1 位作者 周秀骥 何金海 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第1期103-109,共7页
With the 3D chemical transport model OSLO CTM2, the valley of total column ozone over the Tibetan Plateau in summer is reproduced. The results show that when the ozone valley occurs and develops, the transport process... With the 3D chemical transport model OSLO CTM2, the valley of total column ozone over the Tibetan Plateau in summer is reproduced. The results show that when the ozone valley occurs and develops, the transport process plays the main part in the ozone reduction, but the chemical process partly compensates for the transport process. In the dynamic transport process of ozone, the horizontal transport process plays the main part in the ozone reduction in May, but brings about the ozone increase in June and July. The vertical advective process gradually takes the main role in the ozone reduction in June and July. The effect of convective activities rises gradually so that this effect cannot be overlooked in July, as its magnitude is comparable to that of the net changes. The effect of the gaseous chemical process brings about ozone increases which are more than the net changes sometimes, so the chemical effect is also important. 展开更多
关键词 Tibetan Plateau ozone valley dynamic transport process chemical process
下载PDF
A study of fire propagation in coal seam with numerical simulation of heat transfer and chemical reaction rate in mining field 被引量:11
18
作者 Moisés Oswaldo Bustamante Rúa Alan José Daza Aragón Pablo Bustamante Baena 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第6期873-879,共7页
Spontaneous combustion of coal is a problem that affects the mining operation and generates environ-mental,economic,social and geotechnical impacts.This phenomenon has been divided into two pro-cesses:ignition and pro... Spontaneous combustion of coal is a problem that affects the mining operation and generates environ-mental,economic,social and geotechnical impacts.This phenomenon has been divided into two pro-cesses:ignition and propagation.Fire propagation develops in coal seams because of a set of factors such as direction and wind speed,fracturing and temperature.In this work,heat transfer and chemical kinetics are studied from conservation equations of energy and species,respectively,using the software COMSOL Multiphysics to simulate the propagation of fires in coal seams.Two possible scenarios were analyzed that usually occur in the walls of the coal seams,such as fire focus and fire complete screens.It was found that the propagation kinetics of the fire changes depending on the temperature,the fractur-ing of rock mass and the area of fire influence.For temperature values lower than 300℃,there is con-sumption around 250 cm^3/h,values around 700℃,the consumption is 1500 cm^3/h,and for fires of 1200℃ have values of 3000 cm^3/h.Depending on the speed of propagation can vary from 4 to 17cm/day,considering on the level and fracturing of the final wall of the open pit. 展开更多
关键词 SPONTANEOUS combustion of COAL Open PIT mines simulation Heat transfer chemical reaction COMSOL
下载PDF
NUMERICAL SIMULATION OF THE THERMO-MECHANICAL PROCESS FOR BEAM BLANK CONTINUOUS CASTING 被引量:8
19
作者 W. Chen Y.Z. Zhang +4 位作者 C.J. Zhang L.G. Zhu B.X. Wang W.G. Lu J.H. Ma 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第4期241-250,共10页
The aim of this study was to simulate the solidification process of beam blank continuous casting, and then find the reasons for the typical defects of the beam blank. A two-dimensional transient coupled finite elemen... The aim of this study was to simulate the solidification process of beam blank continuous casting, and then find the reasons for the typical defects of the beam blank. A two-dimensional transient coupled finite element model has been developed to compute the temperature and stress profile in beam blank continuous casting. The enthalpy method was used in the heat conduction equation. The thermo-mechanical property in the mushy zone was taken into consideration in this calculation. It is shown that at the mold exit the thickness of the shell had its maximum value at the flange tip and its minimum value at the fillet. The temperature had a great fluctuation on the surface of the beam blank in the secondary cooling zone. At the unbending point, the surface temperature of the web was in the brittleness temperature range under the present condition. To ensure the quality, it is necessary to weaken the intensity of secondary cooling. At the mold exit the equivalent stress and strain have higher values at the flange tip and at the web. From the spray 1 to the unbending point, the maximum values of stress and strain gradually moved to the internal section of the flange tip and the web. However, whenever, there were bigger stress and strain values near the flange tip and the web than in the other parts, it must be very easy to generate cracks at those positions. Now, online verification of this simulation has been developed, which has proved to be very useful and efficient to instruct the practical production of beam blank continuous casting. 展开更多
关键词 beam blank continuous basting thermo-mechanical process simulation
下载PDF
A simulation study of microstructure evolution during solidification process of liquid metal Ni 被引量:9
20
作者 刘海蓉 刘让苏 +3 位作者 张爱龙 侯兆阳 王鑫 田泽安 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第12期3747-3753,共7页
A molecular dynamics simulation study has been performed for the microstructure evolution in a liquid metal Ni system during crystallization process at two cooling rates by adopting the embedded atom method (EAM) mo... A molecular dynamics simulation study has been performed for the microstructure evolution in a liquid metal Ni system during crystallization process at two cooling rates by adopting the embedded atom method (EAM) model potential. The bond-type index method of Honeycutt-Andersen (HA) and a new cluster-type index method (CTIM-2) have been used to detect and analyse the microstructures in this system. It is demonstrated that the cooling rate plays a critical role in the microstructure evolution: below the crystallization temperature Tc, the effects of cooling rate are very remarkable and can be fully displayed. At different cooling rates of 2.0 × 10^13 K·s^-1 and 1.0 × 10^12 K·s^-1, two different kinds of crystal structures are obtained in the system. The first one is the coexistence of the hcp (expressed by (12 0 0 0 6 6) in CTIM-2) and the fcc (12 0 0 0 12 0) basic clusters consisting of 1421 and 1422 bond-types, and the hcp basic cluster becomes the dominant one with decreasing temperature, the second one is mainly the fcc (12 0 0 0 12 0) basic clusters consisting of 1421 bond-type, and their crystallization temperatures Tc would be 1073 and 1173 K, respectively. 展开更多
关键词 liquid metal Ni cooling rate crystallization process microstructure evolution molecular dynamics simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部