The constant Centrifugal potential approximation is Corrected so as to apply to the reactions of rotational excited reactants for D + H2 (j,, νi = 0 ) -DH(jf, νf = 0) + H. Our results show that the contributions fro...The constant Centrifugal potential approximation is Corrected so as to apply to the reactions of rotational excited reactants for D + H2 (j,, νi = 0 ) -DH(jf, νf = 0) + H. Our results show that the contributions from ji≠0 and Ωi terms are not negligible.展开更多
By using first-principles simulations based on time-dependent density functional theory, the chemical reaction of an HCl molecule encapsulated in C60 induced by femtosecond laser pulses is observed. The H atom starts ...By using first-principles simulations based on time-dependent density functional theory, the chemical reaction of an HCl molecule encapsulated in C60 induced by femtosecond laser pulses is observed. The H atom starts to leave the Cl atom and is reflected by the C60 wall. The coherent nuclear dynamic behaviors of bond breakage and recombination of the HCl molecule occurring in both polarized parallel and perpendicular to the H-Cl bond axis are investigated. The radial oscillation is also found in the two polarization directions of the laser pulse. The relaxation time of the H-Cl bond lengths in transverse polarization is slow in comparison with that in longitudinal polarization. Those results are important for studying the dynamics of the chemical bond at an atomic level.展开更多
文摘The constant Centrifugal potential approximation is Corrected so as to apply to the reactions of rotational excited reactants for D + H2 (j,, νi = 0 ) -DH(jf, νf = 0) + H. Our results show that the contributions from ji≠0 and Ωi terms are not negligible.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074176 and 10976019) and the Doctoral Program of Higher Education of China (Grant No. 20100181110080).
文摘By using first-principles simulations based on time-dependent density functional theory, the chemical reaction of an HCl molecule encapsulated in C60 induced by femtosecond laser pulses is observed. The H atom starts to leave the Cl atom and is reflected by the C60 wall. The coherent nuclear dynamic behaviors of bond breakage and recombination of the HCl molecule occurring in both polarized parallel and perpendicular to the H-Cl bond axis are investigated. The radial oscillation is also found in the two polarization directions of the laser pulse. The relaxation time of the H-Cl bond lengths in transverse polarization is slow in comparison with that in longitudinal polarization. Those results are important for studying the dynamics of the chemical bond at an atomic level.