The combustion processes of homogeneous charge compression ignition (HCCI) engines whose piston surfaces have been coated with catalyst (rhodium or platinum) were numerically investigated. A singlezone model and a...The combustion processes of homogeneous charge compression ignition (HCCI) engines whose piston surfaces have been coated with catalyst (rhodium or platinum) were numerically investigated. A singlezone model and a multi-zone model were developed. The effects of catalytic combustion on the ignition timing of the HCCI engine were analyzed through the single-zone model. The results showed that the ignition timing of the HCCI engine was advanced by the catalysis. The effects of catalytic combustion on HC, CO and NOx emissions of the HCCI engine were analyzed through the multi-zone model. The results showed that the emissions of HC and CO (using platinum (Pt) as catalyst) were decreased, while the emissions of NOx were elevated by catalytic combustion. Compared with catalyst Pt, the HC emissions were lower with catalyst rhodium (Rh) on the piston surface, but the emissions of NOx and CO were higher.展开更多
基金the National Key Basic Research Development Project of China (2001CB209201)
文摘The combustion processes of homogeneous charge compression ignition (HCCI) engines whose piston surfaces have been coated with catalyst (rhodium or platinum) were numerically investigated. A singlezone model and a multi-zone model were developed. The effects of catalytic combustion on the ignition timing of the HCCI engine were analyzed through the single-zone model. The results showed that the ignition timing of the HCCI engine was advanced by the catalysis. The effects of catalytic combustion on HC, CO and NOx emissions of the HCCI engine were analyzed through the multi-zone model. The results showed that the emissions of HC and CO (using platinum (Pt) as catalyst) were decreased, while the emissions of NOx were elevated by catalytic combustion. Compared with catalyst Pt, the HC emissions were lower with catalyst rhodium (Rh) on the piston surface, but the emissions of NOx and CO were higher.