The estimation of chemical particles reactivity and the determination of chemical reactions direction are the actual theme in new scientific trend-Chemical Mesoscopics.Paper includes the proposal about the using the t...The estimation of chemical particles reactivity and the determination of chemical reactions direction are the actual theme in new scientific trend-Chemical Mesoscopics.Paper includes the proposal about the using the theory of free energy linear dependence from physical organic chemistry and their applications for prognosis of reactions flowing.The semi-empiric constants is given according to mesoscopic physics definitions as well as the transformed Kolmogorov-Avrami equation is discussed.It is the development of Chemical Mesoscopics for organic reactivity estimation including nanostructures reactivity.展开更多
Besides economics and controllability, waste minimization has now become an objective in designing chemical processes, and usually leads to high costs of investment and operation. An attempt was made to minimize waste...Besides economics and controllability, waste minimization has now become an objective in designing chemical processes, and usually leads to high costs of investment and operation. An attempt was made to minimize waste discharged from chemical reaction processes during the design and modification process while the operation conditions were also optimized to meet the requirements of technology and economics. Multiobjectives decision nonlinear programming (NLP) was employed to optimize the operation conditions of a chemical reaction process and reduce waste. A modeling language package-SPEEDUP was used to simulate the process. This paper presents a case study of the benzene production process. The flowsheet factors affecting the economics and waste generation were examined. Constraints were imposed to reduce the number of objectives and carry out optimal calculations easily. After comparisons of all possible solutions, best-compromise approach was applied to meet technological requirements and minimize waste.展开更多
A stochastic model of chemical reaction-heat conduction-diffusion for a one-dimensional gaseous system under Dirichlet or zero-fluxes boundary conditions is proposed in this paper. Based on this model,we extend the th...A stochastic model of chemical reaction-heat conduction-diffusion for a one-dimensional gaseous system under Dirichlet or zero-fluxes boundary conditions is proposed in this paper. Based on this model,we extend the theory of the broadening exponent of critical fluctuations to cover the chemical reaction-heat conduction coupling systems as an asymptotic property of the corresponding Markovian master equation (ME),and establish a valid stochastic thermodynamics for such systems. As an illustration,the non-isothermal and inhomogeneous Schl-gl model is explicitly studied. Through an order analysis of the contributions from both the drift and diffusion to the evolution of the probability distribution in the corresponding Fokker-Planck equation(FPE) in the approach to bifurcation,we have identified the critical transition rule for the broadening exponent of the fluctuations due to the coupling between chemical reaction and heat conduction. It turns out that the dissipation induced by the critical fluctuations reaches a deterministic level,leading to a thermodynamic effect on the nonequilibrium physico-chemical processes.展开更多
文摘The estimation of chemical particles reactivity and the determination of chemical reactions direction are the actual theme in new scientific trend-Chemical Mesoscopics.Paper includes the proposal about the using the theory of free energy linear dependence from physical organic chemistry and their applications for prognosis of reactions flowing.The semi-empiric constants is given according to mesoscopic physics definitions as well as the transformed Kolmogorov-Avrami equation is discussed.It is the development of Chemical Mesoscopics for organic reactivity estimation including nanostructures reactivity.
文摘Besides economics and controllability, waste minimization has now become an objective in designing chemical processes, and usually leads to high costs of investment and operation. An attempt was made to minimize waste discharged from chemical reaction processes during the design and modification process while the operation conditions were also optimized to meet the requirements of technology and economics. Multiobjectives decision nonlinear programming (NLP) was employed to optimize the operation conditions of a chemical reaction process and reduce waste. A modeling language package-SPEEDUP was used to simulate the process. This paper presents a case study of the benzene production process. The flowsheet factors affecting the economics and waste generation were examined. Constraints were imposed to reduce the number of objectives and carry out optimal calculations easily. After comparisons of all possible solutions, best-compromise approach was applied to meet technological requirements and minimize waste.
基金supported by the National Natural Science Foundation of China (20673074 & 20973119)
文摘A stochastic model of chemical reaction-heat conduction-diffusion for a one-dimensional gaseous system under Dirichlet or zero-fluxes boundary conditions is proposed in this paper. Based on this model,we extend the theory of the broadening exponent of critical fluctuations to cover the chemical reaction-heat conduction coupling systems as an asymptotic property of the corresponding Markovian master equation (ME),and establish a valid stochastic thermodynamics for such systems. As an illustration,the non-isothermal and inhomogeneous Schl-gl model is explicitly studied. Through an order analysis of the contributions from both the drift and diffusion to the evolution of the probability distribution in the corresponding Fokker-Planck equation(FPE) in the approach to bifurcation,we have identified the critical transition rule for the broadening exponent of the fluctuations due to the coupling between chemical reaction and heat conduction. It turns out that the dissipation induced by the critical fluctuations reaches a deterministic level,leading to a thermodynamic effect on the nonequilibrium physico-chemical processes.