期刊文献+
共找到553篇文章
< 1 2 28 >
每页显示 20 50 100
Edge effect during microwave plasma chemical vapor deposition diamond-film:Multiphysics simulation and experimental verification
1
作者 Zhiliang Yang Kang An +7 位作者 Yuchen Liu Zhijian Guo Siwu Shao Jinlong Liu Junjun Wei Liangxian Chen Lishu Wu Chengming Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2287-2299,共13页
This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used t... This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used to simulate plasma and guide the diamond-film deposition experiments.Finite-element software COMSOL Multiphysics was used to construct a multiphysics(electromagnetic,plasma,and fluid heat transfer fields)coupling model based on electron collision reaction.Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model.The simulation results reflected the experimental trends observed.Plasma discharge at the edge of the substrate accelerated due to the increase in△h(△h=0-3 mm),and the values of electron density(n_(c)),molar concentration of H(C_(H)),and molar concentration of CH_(3)(C_(CH_(3)))doubled at the edge(for the special concave sample with△h=−1 mm,the active chemical groups exhibited a decreased molar concentration at the edge of the substrate).At=0-3 mm,a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate,and their values increased with.The uniformity of film thickness decreased with.The Raman spectra of all samples revealed the first-order characteristic peak of dia-mond near 1332 cm^(−1).When△h=−1 mm,tensile stress occurred in all regions of the film.When△h=1-3 mm,all areas in the film ex-hibited compressive stress. 展开更多
关键词 microwave plasma chemical vapor deposition edge discharge plasma diamond film
下载PDF
Fabrication of Graphene/Cu Composite by Chemical Vapor Deposition and Effects of Graphene Layers on Resultant Electrical Conductivity
2
作者 Xinyue Liu Yaling Huang +2 位作者 Yuyao Li Jie Liu Quanfang Chen 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期16-25,共10页
Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the pro... Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil. 展开更多
关键词 chemical vapor deposition(CVD) Gr/Cu Gr/Cu/Gr graphene layers graphene volume fraction electrical conductivity
下载PDF
Uniform deposition of ultra-thin TiO_(2) film on mica substrate by atmospheric pressure chemical vapor deposition: Effect of precursor concentration 被引量:2
3
作者 Ming Liu Ying Li +4 位作者 Rui Wang Guoqiang Shao Pengpeng Lv Jun Li Qingshan Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期99-107,共9页
The performance of pearlescent pigment significantly affected by the grain size and the roughness of deposited film. The effect of TiCl_(4) concentration on the initial deposition of TiO_(2) on mica by atmospheric pre... The performance of pearlescent pigment significantly affected by the grain size and the roughness of deposited film. The effect of TiCl_(4) concentration on the initial deposition of TiO_(2) on mica by atmospheric pressure chemical vapor deposition(APCVD) was investigated. The precursor concentration significantly affected the deposition and morphology of TiO_(2) grains assembling the film. The deposition time for fully covering the surface of mica decreased from 120 to 10 s as the TiCl_(4) concentration increased from 0.38%to 2.44%. The grain size increased with the TiCl_(4) concentration. The AFM and TEM analysis demonstrated that the aggregation of TiO_(2) clusters at the initial stage finally result to the agglomeration of fine TiO_(2) grains at high TiCl_(4) concentrations. Following the results, it was suggested that the nucleation density and size was easy to be adjusted when the TiCl_(4) concentration is below 0.90%. 展开更多
关键词 chemical vapor deposition TiO_(2)thin film Nucleation reaction Precursor concentration Pearlescent pigment
下载PDF
Controllable growth of wafer-scale PdS and PdS_(2) nanofilms via chemical vapor deposition combined with an electron beam evaporation technique
4
作者 Hui Gao Hongyi Zhou +6 位作者 Yulong Hao Guoliang Zhou Huan Zhou Fenglin Gao Jinbiao Xiao Pinghua Tang Guolin Hao 《Journal of Semiconductors》 EI CAS CSCD 2023年第12期64-71,共8页
Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform Pd... Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform PdS and PdS_(2)nanofilms(NFs)remains an enormous challenge.In this work,2-inch wafer-scale PdS and PdS_(2) NFs with excellent stability can be controllably prepared via chemical vapor deposition combined with electron beam evaporation technique.The thickness of the pre-deposited Pd film and the sulfurization temperature are critical for the precise synthesis of PdS and PdS_(2) NFs.A corresponding growth mechanism has been proposed based on our experimental results and Gibbs free energy calculations.The electrical transport properties of PdS and PdS_(2) NFs were explored by conductive atomic force microscopy.Our findings have achieved the controllable growth of PdS and PdS_(2) NFs,which may provide a pathway to facilitate PdS and PdS_(2) based applications for next-generation high performance optoelectronic devices. 展开更多
关键词 PDS PdS_(2) NANOFILMS controllable growth chemical vapor deposition electron beam evaporation
下载PDF
Boron-Silicon Thin Film Formation Using a Slim Vertical Chemical Vapor Deposition Reactor
5
作者 Yuki Kamochi Atsuhiro Motomiya +3 位作者 Hitoshi Habuka Yuuki Ishida Shin-Ichi Ikeda Shiro Hara 《Advances in Chemical Engineering and Science》 CAS 2023年第1期7-18,共12页
A boron-silicon film was formed from boron trichloride gas and dichlorosilane gas at about 900&#8451;in ambient hydrogen at atmospheric pressure utilizing a slim vertical cold wall chemical vapor deposition reacto... A boron-silicon film was formed from boron trichloride gas and dichlorosilane gas at about 900&#8451;in ambient hydrogen at atmospheric pressure utilizing a slim vertical cold wall chemical vapor deposition reactor designed for the Minimal Fab system. The gas flow rates were 80, 20 and 0.1 - 20 sccm for the hydrogen, dichlorosilane and boron trichloride gases, respectively. The gas transport condition in the reactor was shown to quickly become stable when evaluated by quartz crystal microbalances at the inlet and outlet. The boron-silicon thin film was formed by achieving the various boron concentrations of 0.16% - 80%, the depth profile of which was flat. By observing the cross-sectional TEM image, the obtained film was dense. The boron trichloride gas is expected to be useful for the quick fabrication of various materials containing boron at significantly low and high concentrations. 展开更多
关键词 chemical vapor deposition Boron-Silicon Film Boron Trichloride DICHLOROSILANE
下载PDF
Modification of ACFs by chemical vapor deposition and its application for removal of methyl orange from aqueous solution 被引量:3
6
作者 王丽平 黄柱成 张明瑜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期530-537,共8页
Viscose activated carbon fibers (ACFs) were characterized using specific surface area, scanning electron modified with chemical vapor deposition (CVD). The samples were microscopy (SEM), pore size distribution a... Viscose activated carbon fibers (ACFs) were characterized using specific surface area, scanning electron modified with chemical vapor deposition (CVD). The samples were microscopy (SEM), pore size distribution and Fourier transform infrared spectroscopy (FTIR). Batch adsorption experiments were carried out to investigate the adsorption behavior of modified ACFs for methyl orange(MO) from its aqueous solutions. The results show that the adsorption isotherms of MO onto modified ACFs well follows the Langmuir isotherm equation. The adsorption kinetics of MO can be well described by the pseudo second-order kinetic model. The adsorption process involves the intra-particle diffusion, but is not the only rate-controlling step. Thermodynamic parameters including AG, AH and AS were calculated, suggesting that the adsorption of MO onto modified ACFs is a spontaneous, exothermic and physisorption process. FTIR result indicates that the major adsorption mechanism of modified ACFs for MO is hydrogen bond. 展开更多
关键词 viscose activated carbon fiber chemical vapor deposition MODIFICATION methyl orange adsorption isotherm kinetics THERMODYNAMICS
下载PDF
Two Step Chemical Vapor Deposition of In2Se3/MoSe2 van der Waals Heterostructures
7
作者 陈玉林 李铭领 +6 位作者 吴一鸣 李思嘉 林岳 杜冬雪 丁怀义 潘楠 王晓平 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第3期325-332,I0002,共9页
Two-dimensional transition metal dichalcogenides heterostructures have stimulated wide in- terest not only for the fundamental research, but also for the application of next generation electronic and optoelectronic de... Two-dimensional transition metal dichalcogenides heterostructures have stimulated wide in- terest not only for the fundamental research, but also for the application of next generation electronic and optoelectronic devices. Herein, we report a successful two-step chemical vapor deposition strategy to construct vertically stacked van der Waals epitaxial In2Se3/MoSe2 heterostructures. Transmission electron microscopy characterization reveals clearly that the In2Se3 has well-aligned lattice orientation with the substrate of monolayer MoSe2. Due to the interaction between the In2Se3 and MoSe2 layers, the heterostructure shows the quench- ing and red-shift of photoluminescence. Moreover, the current rectification behavior and photovoltaic effect can be observed from the heterostructure, which is attributed to the unique band structure alignment of the heterostructure, and is further confirmed by Kevin probe force microscopy measurement. The synthesis approach via van der Waals epitaxy in this work can expand the way to fabricate a variety of two-dimensional heterostructures for potential applications in electronic and optoelectronic devices. 展开更多
关键词 van der Waals heterostructures chemical vapor deposition In2Sea/MoSe2 Kevin probe force microscopy n+-n junction
下载PDF
Low-Temperature Growth of ZnO Films on GaAs by Metal Organic Chemical Vapor Deposition
8
作者 史慧玲 马骁宇 +1 位作者 胡理科 崇峰 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第1期12-16,共5页
ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precu... ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects. 展开更多
关键词 metal-organic chemical vapor deposition ZnO film GAAS LOW-TEMPERATURE
下载PDF
Technical Challenges and Progress in Fluidized Bed Chemical Vapor Deposition of Polysilicon 被引量:12
9
作者 李建隆 陈光辉 +2 位作者 张攀 王伟文 段继海 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第5期747-753,共7页
Various methods for production of polysilicon have been proposed for lowering the production cost andenergy consumption, and enhancing productivity, which are critical for industrial applications. The fluidized bed ch... Various methods for production of polysilicon have been proposed for lowering the production cost andenergy consumption, and enhancing productivity, which are critical for industrial applications. The fluidized bed chemical vapor deposition (FBCVD) method is a most promising alternative to conventional ones, but the homogeneous reaction of silane in FBCVD results in unwanted formation of fines, which will affect the product qualityand output. There are some other problems, such as heating degeneration due to undesired polysilicon deposition on the walls of the reactor and the heater. This article mainly reviews the technological development on FBCVD of polycrystalline silicon and the research status for solving the above problems. It also identifies a number of challenges to tackle and principles should be followed in the design ofa FBCVD reactor. 展开更多
关键词 fluidized bed chemical vapor deposition fine particles homogeneous reaction
下载PDF
GROWTH MECHANISM OF TiC WHISKERS PREMRED BY A MODIFIED CHEMICAL VAPOR DEPOSITION METHOD 被引量:7
10
作者 J.S. Pan and Y. W. Yuan (Department of Materials Science and Engineering, Tsinghua Universityt Beijing 100084, China)(Department of Materials Science and Engineering, Tsinghua Universityt Beijing 100084, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第3期278-282,共5页
High quality TiC whiskers have been prepared by a modified chemical vapor deposition (CVD) method using TiCl4 and CH4 as reactant gases and Ni as substrate. The deposition temperature and gas flow mies have ampreciabl... High quality TiC whiskers have been prepared by a modified chemical vapor deposition (CVD) method using TiCl4 and CH4 as reactant gases and Ni as substrate. The deposition temperature and gas flow mies have ampreciable effect on the whisker growth.The whisker orientations and morphology are determined by X-my diffraction (XRD),scanning electron micmpmph (SEM) and transmission electron microgmph (TEM).In addition to the spherical tips, spiral growth microsteps and obvious terraces are observed at the tips and side faces of whiskers in the present eoperiment. The whiskers grow mostly along (100) direction. The whisker growth mechanism is discussed in detail. 展开更多
关键词 TIC WHISKER chemical vapor deposition (CVD) growth mechanism
下载PDF
Numerical modeling of SiC by low-pressure chemical vapor deposition from methyltrichlorosilane 被引量:6
11
作者 Kang Guan Yong Gao +5 位作者 Qingfeng Zeng Xingang Luan Yi Zhang Laifei Cheng Jianqing Wu Zhenya Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第6期1733-1743,共11页
The development of functional relationships between the observed deposition rate and the experimental conditions is an important step toward understanding and optimizing low-pressure chemical vapor deposition(LPCVD)or... The development of functional relationships between the observed deposition rate and the experimental conditions is an important step toward understanding and optimizing low-pressure chemical vapor deposition(LPCVD)or low-pressure chemical vapor infiltration(LPCVI).In the field of ceramic matrix composites(CMCs),methyltrichlorosilane(CH3 SiCl3,MTS)is the most widely used source gas system for SiC,because stoichiometric SiC deposit can be facilitated at 900°C–1300°C.However,the reliability and accuracy of existing numerical models for these processing conditions are rarely reported.In this study,a comprehensive transport model was coupled with gas-phase and surface kinetics.The resulting gas-phase kinetics was confirmed via the measured concentration of gaseous species.The relationship between deposition rate and 24 gaseous species has been effectively evaluated by combining the special superiority of the novel extreme machine learning method and the conventional sticking coefficient method.Surface kinetics were then proposed and shown to reproduce the experimental results.The proposed simulation strategy can be used for different material systems. 展开更多
关键词 chemical vapor deposition MTS/H2 Gas-phase and surface kinetics Extreme learning machine method Numerical model
下载PDF
Science Letters:Development of supported boron-doping TiO_2 catalysts by chemical vapor deposition 被引量:4
12
作者 Xing-wang ZHANG Le-cheng LEI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第1期109-112,共4页
In this study, supported nonmetal (boron) doping TiO2 coating photocatalysts were prepared by chemical vapor deposition (CVD) to enhance the activity under visible light irradiation and avoid the recovering of TiO2. B... In this study, supported nonmetal (boron) doping TiO2 coating photocatalysts were prepared by chemical vapor deposition (CVD) to enhance the activity under visible light irradiation and avoid the recovering of TiO2. Boron atoms were successfully doped into the lattice of TiO2 through CVD, as evidenced from XPS analysis. B-doped TiO2 coating catalysts showed drastic and strong absorption in the visible light range with a red shift in the band gap transition. This novel B-TiO2 coating photocatalyst showed higher photocatalytic activity in methyl orange degradation under visible light irradiation than that of the pure TiO2 photocatalyst. 展开更多
关键词 chemical vapor deposition (CVD) TiO2 BORON Visible light PHOTOCATALYSIS
下载PDF
Texture Evolutions in Fe-6.5%Si Produced by Rapid Solidification and Chemical Vapor Deposition 被引量:3
13
作者 Liang ZUO Guangyong HU +1 位作者 Yuhui SHA Claude ESLING 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第6期516-518,共3页
Fe-Si ribbons and thin sheets with 6.5%Si content were prepared by means of the single roller rapid solidification and chemical vapor deposition (CVD), respectively. The initial textures of rapidly solidified Fe-6.5%S... Fe-Si ribbons and thin sheets with 6.5%Si content were prepared by means of the single roller rapid solidification and chemical vapor deposition (CVD), respectively. The initial textures of rapidly solidified Fe-6.5%Si ribbons were characteristic of the {100} fiber-type, which became weakened during primary recrystallization in various atmospheres. At the stage of secondary recrystallization, the {100} texture formed in Ar and the {110} texture in hydrogen, while there occurred a texture transformation from the {100} type to the {110} type in vacuum with the increase of annealing temperature. For Fe-6.5%Si sheets prepared by Si deposition in cold-rolled Fe-3%Si matrix sheets, their textures were dominated by the η-fiber (<001>//RD) with the maximum density at the {120}<001> orientations. After homogenization annealing, the η-fiber could evolve into the {130}<001> type or become more concentrated on the {120}<001> orientations, depending on the cold rolling modes of Fe-3%Si matrix sheets. 展开更多
关键词 Fe-6.5%Si alloy TEXTURE Rapid solidification chemical vapor deposition
下载PDF
Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition 被引量:3
14
作者 Yan Wang Shuai Luo +2 位作者 Haiming Ji Di Qu Yidong Huang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期568-571,共4页
We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the ... We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the 3-d B spectral bandwidth of the Fabry–Perot(FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm.Combined with the anti-reflection(AR)/high-reflection(HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 k A/cm2. The maximum output power of 6.5 m W was achieved under a 500 m A injection current.All achievements mentioned above were obtained under continuous-wave(CW) mode at room temperature(RT). 展开更多
关键词 InAs/InP quantum dot external-cavity laser continuous-wave operation metal-organic chemical vapor deposition
下载PDF
Mg-doped ZnO radial spherical structures via chemical vapor deposition 被引量:2
15
作者 PENG Jiangqiang GUO Jian DING Shulong XU Qiao LI Hang TAN Xuwei ZHAO Xian 《Rare Metals》 SCIE EI CAS CSCD 2011年第3期292-297,共6页
Mg-doped ZnO radial spherical structures with nanorods grown on both sides of the spherical shell were successfully prepared via chemical vapor deposition (CVD) of Zn and Mg powders in the absence of a catalyst. The... Mg-doped ZnO radial spherical structures with nanorods grown on both sides of the spherical shell were successfully prepared via chemical vapor deposition (CVD) of Zn and Mg powders in the absence of a catalyst. The structures associated with different growth temperatures (700, 800, and 850°C) were monitored by scanning electron microscopy (SEM), and the result shows that the length of the nanorods increase progressively with the growth temperature increasing. X-ray diffraction (XRD) shows that the as-obtained samples can be indexed to high crystallinity with wurtzite structure. The growth of the nanostructures mainly depends on the formation of sphere-like Mg-doped Zn droplets before adding oxygen. Photoluminescence (PL) spectra that show a 39 meV blue shift indicates that the band gap becomes large, because Mg substitutes Zn in the lattice. 展开更多
关键词 zinc oxide magnesium DOPING NANORODS chemical vapor deposition photoluminescence spectroscopy
下载PDF
High-Frequency AlGaN/GaN High-Electron-Mobility Transistors with Regrown Ohmic Contacts by Metal-Organic Chemical Vapor Deposition 被引量:5
16
作者 郭红雨 吕元杰 +7 位作者 顾国栋 敦少博 房玉龙 张志荣 谭鑫 宋旭波 周幸叶 冯志红 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第11期166-168,共3页
Nonalloyed ohmic contacts regrown by metal-organic chemical vapor deposition are performed on AlGaN/GaN high-electron-mobility transistors. Low ohmic contact resistance of 0.15Ω.mm is obtained. It is found that the s... Nonalloyed ohmic contacts regrown by metal-organic chemical vapor deposition are performed on AlGaN/GaN high-electron-mobility transistors. Low ohmic contact resistance of 0.15Ω.mm is obtained. It is found that the sidewall obliquity near the regrown interface induced by the plasma dry etching has great influence on the total contact resistance. The fabricated device with a 100-nm T-shaped gate demonstrates a maximum drain current density of 0.95 A/mm at Vgs = 1 V and a maximum peak extrinsic transcondutance Gm of 216mS/ram. Moreover, a current gain cut-off frequency fT of 115 GHz and a maximum oscillation frequency fmax of 127 GHz are achieved. 展开更多
关键词 GAN High-Frequency AlGaN/GaN High-Electron-Mobility Transistors with Regrown Ohmic Contacts by Metal-Organic chemical vapor deposition
下载PDF
Carbon nanotubes for supercapacitors:Consideration of cost and chemical vapor deposition techniques 被引量:3
17
作者 Chao Zheng Weizhong Qian +4 位作者 Chaojie Cui Guanghui Xu Mengqiang Zhao Guili Tian Fei Wei 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第3期233-240,共8页
In this topic, we first discussed the requirement and performance of supercapacitors using carbon nanotubes (CNTs) as the electrode, including specific surface area, purity and cost. Then we reviewed the preparation... In this topic, we first discussed the requirement and performance of supercapacitors using carbon nanotubes (CNTs) as the electrode, including specific surface area, purity and cost. Then we reviewed the preparation technique of single wailed CNTs (SWNTs) in relatively large scale by chemical vapor deposition method. Its catalysis on the decomposition of methane and other carbon source, the reactor type and the process control strategies were discussed. Special focus was concentrated on how to increase the yield, selectivity, and purity of SWNTs and how to inhibit the formation of impurities, including amorphous carbon, multiwalled CNTs and the carbon encapsulated metal particles, since these impurities seriously influenced the performance of SWNTs in supercapacitors. Wish it be helpful to further decrease its product cost and for the commercial use in supercapacitors. 展开更多
关键词 SUPERCAPACITOR carbon nanotubes: chemical vapor deposition CATALYSIS methane
下载PDF
Microwave Plasma Chemical Vapor Deposition of Diamond Films on Silicon From Ethanol and Hydrogen 被引量:3
18
作者 马志斌 满卫东 +1 位作者 汪建华 王传新 《Plasma Science and Technology》 SCIE EI CAS CSCD 2003年第2期1735-1741,共7页
Diamond films with very smooth surface and good optical quality have been deposited onto silicon substrate using microwave plasma chemical vapor deposition (MPCVD) from a gas mixture of ethanol and hydrogen at a low s... Diamond films with very smooth surface and good optical quality have been deposited onto silicon substrate using microwave plasma chemical vapor deposition (MPCVD) from a gas mixture of ethanol and hydrogen at a low substrate temperature of 450 ℃. The effects of the substrate temperature on the diamond nucleation and the morphology of the diamond film have been investigated and observed with scanning electron microscopy (SEM). The microstructure and the phase of the film have been characterized using Raman spectroscopy and X-ray diffraction (XRD). The diamond nucleation density significantly decreases with the increasing of the substrate temperature. There are only sparse nuclei when the substrate temperature is higher than 800 ℃ although the ethanol concentration in hydrogen is very high. That the characteristic diamond peak in the Raman spectrum of a diamond film prepared at a low substrate temperature of 450 ℃ extends into broadband indicates that the film is of nanophase. No graphite peak appeared in the XRD pattern confirms that the film is mainly composed of SP3 carbon. The diamond peak in the XRD pattern also broadens due to the nanocrystalline of the film. 展开更多
关键词 diamond film microwave plasma chemical vapor deposition ETHANOL
下载PDF
Preparation and characteristics of C/C composite brake disc by multi-cylindrical chemical vapor deposition processes 被引量:3
19
作者 袁毅东 张富宽 周万成 《Journal of Central South University of Technology》 EI 2005年第4期400-402,共3页
The C/C composite brake discs were prepared by tri-cylindrical chemical vapor deposition (CVD) process. The optimum processing parameters were as follows: deposition temperature was 830 - 930 ℃, the gas- flow rate... The C/C composite brake discs were prepared by tri-cylindrical chemical vapor deposition (CVD) process. The optimum processing parameters were as follows: deposition temperature was 830 - 930 ℃, the gas- flow rates of N2 and propylene were 4.8 - 5.2 m^3/h and 5.8 - 6.2 m^3/h, respectively, the furnace pressure was 4.5 - 5.5 kPa and the deposition time was 200 h. The effects of processing parameters on the densified rates, thermal-physical property and mechanical performance of C/C composite brake discs were studied. The results show that density, heat conductivity, bend strength and abrasion ratio of the multi-cylindrica brake discs are 1. 02 - 1. 78 g/cm^3 , 31 W/(m·K), 114 MPa and 7μm/s, respectively, which are approximately similar to those of the singlecylindrical ones. The gas tlow rate has no relation to the number of the cylinder and furnace loading. The utilization ratio of carbon can be improved by multi-cylinder CVD process without changing the characteristics of brake disc. 展开更多
关键词 C/C composite brake disc chemical vapor deposition multi-cylindrical mechanical property
下载PDF
Fibrous TiO_2 prepared by chemical vapor deposition using activated carbon fibers as template via adsorption,hydrolysis and calcinations 被引量:2
20
作者 Hui-na YANG Li-fen LIU +1 位作者 Feng-lin YANG Jimmy C. YU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第7期981-987,共7页
TiO2 fibers were prepared via alternatively introducing water vapor and Ti precursor carried by N2 to an APCVD (chemical vapor deposition under atmospheric pressure) reactor at ≤200 ℃. Activated carbon fibers (A... TiO2 fibers were prepared via alternatively introducing water vapor and Ti precursor carried by N2 to an APCVD (chemical vapor deposition under atmospheric pressure) reactor at ≤200 ℃. Activated carbon fibers (ACFs) were used as templates for deposition and later removed by calcinations. The obtained catalysts were characterized by scanning electron micros- copy (SEM), transmission electron microscopy (TEM), Brunauer, Emmett and Teller (BET) and X-ray diffraction (XRD) analysis The pores within TiO2 fibers included micro-range and meso-range, e.g., 7 nm, and the specific surface areas for TiO2 fibers were 141 m^2/g and 148 m^2/g for samples deposited at 100 ℃ and 200℃ (using ACFI700 as template), respectively. The deposition temperature significantly influenced TiO2 morphology. The special advantages of this technique for preparing porous nano-material include no consumption of organic solvent in the process and easy control of deposition conditions and speeds. 展开更多
关键词 chemical vapor deposition (CVD) Porous material Activated carbon fiber (ACF)
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部