期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Amorphous Silicon Films Prepared by Catalytic Chemical Vapor Deposition Method
1
作者 ZHONGBoqiang HUANGCixiang 《Semiconductor Photonics and Technology》 CAS 1998年第1期31-35,共5页
Amorphous silicon films are prepared at lower temperature of 350 ℃ by new catalytic chemical vapor deposition method.In the method,material gases (SiH 4 and H 2) are decomposed by catalytic reaction at given temper... Amorphous silicon films are prepared at lower temperature of 350 ℃ by new catalytic chemical vapor deposition method.In the method,material gases (SiH 4 and H 2) are decomposed by catalytic reaction at given temperature,so a-Si films are deposited on substrates.It is found that a-Si films with high quality can be obtain,such as high photosensitivity of 10 6,low spin density of 2.5×10 16 cm -3 . 展开更多
关键词 Amorphous Silicon Films Catalytic chemical vapor depositon Growth Rate
下载PDF
A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe2 films 被引量:4
2
作者 Jongyeol Baek Demin Yin +9 位作者 Na Liu Inturu Omkaram Chulseung Jung Healin Im Seongin Hong Seung Min Kim Young Ki Hong Jaehyun Hur Youngki Yoon Sunkook Kim 《Nano Research》 SCIE EI CAS CSCD 2017年第6期1861-1871,共11页
Layered semiconductors with atomic thicknesses are becoming increasingly important as active elements in high-performance electronic devices owing to their high carrier mobilities, large surface-to-volume ratios, and ... Layered semiconductors with atomic thicknesses are becoming increasingly important as active elements in high-performance electronic devices owing to their high carrier mobilities, large surface-to-volume ratios, and rapid electrical responses to their surrounding environments. Here, we report the first implementation of a highly sensitive chemical-vapor-deposition-grown multilayer MoSe2 field-effect transistor (FET) in a NO2 gas sensor. This sensor exhibited ultra-high sensitivity (S = ca. 1,907 for NO2 at 300 ppm), real-time response, and rapid on-off switching. The high sensitivity of our MoSe2 gas sensor is attributed to changes in the gap states near the valence band induced by the NO2 gas absorbed in the MoSe2, which leads to a significant increase in hole current in the off-state regime. Device modeling and quantum transport simulations revealed that the variation of gap states with NO2 concentration is the key mechanism in a MoSe2 FET-based NO2 gas sensor. This comprehensive study, which addresses material growth, device fabrication, characterization, and device simulations, not only indicates the utility of MoSe2 FETs for high-performance chemical sensors, but also establishes a fundamental understanding of how surface chemistry influences carrier transport in layered semiconductor devices. 展开更多
关键词 transition metaldichalcogenides MoSe2 chemical sensors chemical vapor depositon
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部