A procedure for purification of single walled carbon nanotubes(SWNTs) grown by the chemical vapour deposition(CVD) of carbon monooxide has been developed. Based on the result from TGA/DTA of as prepared sample, the ...A procedure for purification of single walled carbon nanotubes(SWNTs) grown by the chemical vapour deposition(CVD) of carbon monooxide has been developed. Based on the result from TGA/DTA of as prepared sample, the oxidation temperature was determined. The process included sonication, oxidation and acid washing steps. The purity and yield after purification were determined and estimated by TEM. Moreover, for the first time, a loop structure for CVD SWNTs has been observed.展开更多
We have successfully demonstrated that high quality and high dielectric constant layers can be fabricated by low temperature photo-induced or -assisted processing. Ta_2O_5 and ZrO_2 have been deposited at t<400 ℃ ...We have successfully demonstrated that high quality and high dielectric constant layers can be fabricated by low temperature photo-induced or -assisted processing. Ta_2O_5 and ZrO_2 have been deposited at t<400 ℃ by means of a UV photo-CVD technique and HfO_2 by photo-assisted sol-gel processing with the aid of excimer lamps. The UV annealing of as-grown layers was found to significantly improve their electrical properties. Low leakage current densities on the order of 10 -8 A/cm 2 at 1 MV/cm for deposited ultrathin Ta_2O_5 films and ca.10 -6 A/cm 2 for the photo-CVD ZrO_2 layers and photo-irradiated sol-gel HfO_2 layers have been readily achieved. The improvement in the leakage properties of these layers is attributed to the UV-generated active oxygen species O( 1D) which strongly oxidize any suboxides to form more stoichiometric oxides on removing certain defects, oxygen vacancies and impurities present in the as-prepared layers. The photo-CVD Ta_2O_5 films deposited across 10.16-cm Si wafers exhibit a high thickness uniformity with a variation of less than \{±2.0%\} being obtained for ultrathin ca.10 nm thick films. The lamp technology can in principle be extended to larger area wafers, providing a promising low temperature route to the fabrication of a range of high quality thin films for future ULSI technology.展开更多
The growth of high-quality germanium tin(Ge_(1–y)Sn_(y))binary alloys on a Si substrate using chemical vapor deposition(CVD)techniques holds immense potential for advancing electronics and optoelectronics application...The growth of high-quality germanium tin(Ge_(1–y)Sn_(y))binary alloys on a Si substrate using chemical vapor deposition(CVD)techniques holds immense potential for advancing electronics and optoelectronics applications,including the development of efficient and low-cost mid-infrared detectors and light sources.However,achieving precise control over the Sn concentration and strain relaxation of the Ge_(1–y)Sn_(y)epilayer,which directly influence its optical and electrical properties,remain a significant challenge.In this research,the effect of strain relaxation on the growth rate of Ge_(1–y)Sn_(y)epilayers,with Sn concentration>11at.%,is investigated.It is successfully demonstrated that the growth rate slows down by~55%due to strain relaxation after passing its critical thickness,which suggests a reduction in the incorporation of Ge into Ge_(1–y)Sn_(y)growing layers.Despite the increase in Sn concentration as a result of the decrease in the growth rate,it has been found that the Sn incorporation rate into Ge_(1–y)Sn_(y)growing layers has also decreased due to strain relaxation.Such valuable insights could offer a foundation for the development of innovative growth techniques aimed at achieving high-quality Ge_(1–y)Sn_(y)epilayers with tuned Sn concentration and strain relaxation.展开更多
文摘A procedure for purification of single walled carbon nanotubes(SWNTs) grown by the chemical vapour deposition(CVD) of carbon monooxide has been developed. Based on the result from TGA/DTA of as prepared sample, the oxidation temperature was determined. The process included sonication, oxidation and acid washing steps. The purity and yield after purification were determined and estimated by TEM. Moreover, for the first time, a loop structure for CVD SWNTs has been observed.
文摘We have successfully demonstrated that high quality and high dielectric constant layers can be fabricated by low temperature photo-induced or -assisted processing. Ta_2O_5 and ZrO_2 have been deposited at t<400 ℃ by means of a UV photo-CVD technique and HfO_2 by photo-assisted sol-gel processing with the aid of excimer lamps. The UV annealing of as-grown layers was found to significantly improve their electrical properties. Low leakage current densities on the order of 10 -8 A/cm 2 at 1 MV/cm for deposited ultrathin Ta_2O_5 films and ca.10 -6 A/cm 2 for the photo-CVD ZrO_2 layers and photo-irradiated sol-gel HfO_2 layers have been readily achieved. The improvement in the leakage properties of these layers is attributed to the UV-generated active oxygen species O( 1D) which strongly oxidize any suboxides to form more stoichiometric oxides on removing certain defects, oxygen vacancies and impurities present in the as-prepared layers. The photo-CVD Ta_2O_5 films deposited across 10.16-cm Si wafers exhibit a high thickness uniformity with a variation of less than \{±2.0%\} being obtained for ultrathin ca.10 nm thick films. The lamp technology can in principle be extended to larger area wafers, providing a promising low temperature route to the fabrication of a range of high quality thin films for future ULSI technology.
文摘The growth of high-quality germanium tin(Ge_(1–y)Sn_(y))binary alloys on a Si substrate using chemical vapor deposition(CVD)techniques holds immense potential for advancing electronics and optoelectronics applications,including the development of efficient and low-cost mid-infrared detectors and light sources.However,achieving precise control over the Sn concentration and strain relaxation of the Ge_(1–y)Sn_(y)epilayer,which directly influence its optical and electrical properties,remain a significant challenge.In this research,the effect of strain relaxation on the growth rate of Ge_(1–y)Sn_(y)epilayers,with Sn concentration>11at.%,is investigated.It is successfully demonstrated that the growth rate slows down by~55%due to strain relaxation after passing its critical thickness,which suggests a reduction in the incorporation of Ge into Ge_(1–y)Sn_(y)growing layers.Despite the increase in Sn concentration as a result of the decrease in the growth rate,it has been found that the Sn incorporation rate into Ge_(1–y)Sn_(y)growing layers has also decreased due to strain relaxation.Such valuable insights could offer a foundation for the development of innovative growth techniques aimed at achieving high-quality Ge_(1–y)Sn_(y)epilayers with tuned Sn concentration and strain relaxation.