Ni-based, Fe-based and Co-based oxygen carriers with perovskite oxides used as the supports were prepared by citric acid complexation method, The oxygen carriers were characterized by thermal analysis, H2-temperature-...Ni-based, Fe-based and Co-based oxygen carriers with perovskite oxides used as the supports were prepared by citric acid complexation method, The oxygen carriers were characterized by thermal analysis, H2-temperature-programmed reduction and X-ray diffraction methods. Performance tests were evaluated through Chemical-Looping Hydrogen Genera- tion in a fixed-bed reactor operating at atmospheric pressure. The characterization results showed that all samples were composed of metal oxides and perovskite oxides. Performance results indicated that CH4 conversion over the oxygen car- riers decreased in the lbllowing order: NiO/LaNiO3〉Co203/LaCoO3〉Fe203/LaFeO3. The ability of NiO/LaNiO3 and F%O3/ LaFeO3 to decompose water was stronger than that of Co203/LaCoO3 as evidenced by our experiments. H2 amounting to 80 mL upon reacting on methane in every cycle could be completely oxidized by NiO/LaNiO3 at 900℃ in the period from the third cycle to the eighth cycle.展开更多
Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the...Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the use of Ca_(2)MnO_(4)-layered perovskites modified with NaNO_(3) dopants,serving as redox catalysts(also known as oxygen carriers),for the CL-ODH of ethane within a temperature range of 700-780℃.Our findings revealed that the incorporation of NaNO_(3) as a modifier significantly-nhanced the selectivity for-thylene generation from Ca_(2)MnO_(4).At 750℃and a gas hourly space velocity of 1300 h^(-1),we achieved an-thane conversion up to 68.17%,accompanied by a corresponding-thylene yield of 57.39%.X-ray photoelectron spectroscopy analysis unveiled that the doping NaNO_(3) onto Ca_(2)MnO_(4) not only played a role in reducing the oxidation state of Mn ions but also increased the lattice oxygen content of the redox catalyst.Furthermore,formation of NaNO_(3) shell on the surface of Ca_(2)MnO_(4) led to a reduction in the concentration of manganese sites and modulated the oxygen-releasing behavior in a step-wise manner.This modulation contributed significantly to the enhanced selectivity for ethylene of the NaNO_(3)-doped Ca_(2)MnO_(4) catalyst.These findings provide compelling evidence for the potential of Ca_(2)MnO_(4)-layered perovskites as promising redox catalysts in the context of CL-ODH reactions.展开更多
Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this s...Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this study,nanocatalysts with ultralow Pt content,excellent performance,and carbon black as support were prepared through in-situ synthesis.These~2-nm particles uniformly and stably dispersed on carbon black because of the strong s-p-d orbital hybridizations between carbon black and Pt,which suppressed the agglomeration of Pt ions.This unique structure is beneficial for the hydrogen evolution reaction.The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction,exhibiting a potential of 100 mV at 100 mA·cm^(-2),which is comparable to those of commercial Pt/C catalysts.Mass activity(1.61 A/mg)was four times that of a commercial Pt/C catalyst(0.37 A/mg).The ultralow Pt loading(6.84wt%)paves the way for the development of next-generation electrocatalysts.展开更多
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t...This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.展开更多
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an...The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.展开更多
The need for the separation of azeotropic mixtures for the production of high-end chemicals and resource recovery has spurred significant research into the development of new separation methods in the chemical industr...The need for the separation of azeotropic mixtures for the production of high-end chemicals and resource recovery has spurred significant research into the development of new separation methods in the chemical industry.In this paper,a green and sustainable method for azeotrope separation is proposed based on a chemical-looping concept with the help of reversible-reaction-assisted distillation.The central concept in the chemical-looping separation(CLS)method is the selection of a reactant that can react with the azeotrope components and can also be recycled by the reverse reaction to close the loop and achieve cyclic azeotrope separation.This paper aims to provide an informative perspective on the fundamental theory and applications of the CLS method based on the separation principle,reactant selection,and case analysis,for example,the separation of alkenes,alkane,aromatics,and polyol products.In summary,we provide guidance and references for chemical separation process intensification in product refining and separation from azeotropic systems for the development of a more sustainable chemical industry.展开更多
Abstract:The aim of this research is to design and operate a 10 kW hot chemical-looping gasification(CLG)unit using Fe2O3/Al2O3as an oxygen carrier and saw dust as a fuel.The effect of the operation temperature on gas...Abstract:The aim of this research is to design and operate a 10 kW hot chemical-looping gasification(CLG)unit using Fe2O3/Al2O3as an oxygen carrier and saw dust as a fuel.The effect of the operation temperature on gas composition in the air reactor and the fuel reactor,and the carbon conversion of biomass to CO2and CO in the fuel reactor have been experimentally studied.A total60 h run has been obtained with the same batch of oxygen carrier of iron oxide supported with alumina.The results show that CO and H2concentrations are increased with increasing temperature in the fuel reactor.It is also found that with increasing fuel reactor temperature,both the amount of residual char in the fuel reactor and CO2concentration of the exit gas from the air reactor are degreased.Carbon conversion rate and gasification efficiency are increased by increasing temperature and H2production at 870℃reaches the highest rate.Scanning electron microscopy(SEM),X-ray diffraction(XRD)and BET-surface area tests have been used to characterize fresh and reacted oxygen carrier particles.The results display that the oxygen carrier activity is not declined and the specific surface area of the oxygen carrier particles is not decreased significantly.展开更多
The cycle life of oxygen carrier(OC) is crucial to the practical applications of chemical looping combustion(CLC). Cycle performance of Cu/SiO2 prepared with a mechanical mixing method was evaluated based on a CLC...The cycle life of oxygen carrier(OC) is crucial to the practical applications of chemical looping combustion(CLC). Cycle performance of Cu/SiO2 prepared with a mechanical mixing method was evaluated based on a CLC process characterized with an added methane steam reforming step. The Cu/SiO2 exhibited high redox reactivity in the initial cycles, while the performance degraded with cycle number. Through characterization of the degraded Cu/SiO2, the performance degradation was mainly caused by the secondary particles' fragmentation and the fine particles' local agglomeration, which worsened the distribution and diffusion of the reactive gases in the packed bed. A regeneration method of the degraded OC based on re-granulation has been proposed, and its mechanism has been illustrated. With this method, the performance of the degraded OC through 420 redox cycles was recovered to a level close to the initial one.展开更多
The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for ...The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond.展开更多
The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantl...The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantly,but the origin analysis of different gas types has previously been weak.Based on the geochemical parameters of gas samples from different depths and the analysis of geological settings,this research covers the diverse origins of natural gas in different strata.The gas components are mainly methane with a small amount of C_(2+),and non-hydrocarbon gases,including nitrogen(N_(2)),hydrogen(H_(2)),carbon dioxide(CO_(2)),and helium(He).At greater depth,the carbon isotope of methane becomes heavier,and the hydrogen isotope points to a lacustrine sedimentary environment.With increasing depth,the origins of N_(2)and CO_(2)change gradually from a mixture of organic and inorganic to inorganic.The origins of hydrogen gas are complex and include organic sources,water radiolysis,water-rock(Fe^(2+)-containing minerals)reactions,and mantle-derived.The shales of Denglouku and Shahezi Formations,as source rocks,provide the premise for generation and occurrence of organic gas.Furthermore,the deep faults and fluid activities in Basement Formation control the generation and migration of mantle-derived gas.The discovery of a high content of H_(2)in study area not only reveals the organic and inorganic association of natural-gas generation,but also provides a scientific basis for the exploration of deep hydrogen-rich gas.展开更多
Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen pro...Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.展开更多
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year...Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.展开更多
The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide incl...The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide inclusions.Scanning Kelvin Probe Force Microscopy demonstrated that MgO inclusions could act as cathodes for Mg corrosion,but their low conductivity likely precludes this.However,the density of state calculations through density functional theory using hybrid HSE06 functional revealed overlapping electronic states at the Mg/MgO interface,which facilitates electron transfers and participates in redox reactions.Subsequent determination of the hydrogen absorption energy at the Mg/MgO interface reveals it to be an excellent catalytic site,with HER being found to be a factor of 23x more efficient at the interface than on metallic Mg.The results not only support the plausibility of the Mg/MgO interface being an effective cathode to the adjacent anodic Mg matrix during corrosion but also contribute to the understanding of the enhanced cathodic activities observed during the anodic dissolution of magnesium.展开更多
The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to ...The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to modulate its catalytic HOR performance,but at the cost of mass activity due to the coverage of modifiers on Pt surface.Herein,we constructed dual junctions'Pt/nitrogen-doped carbon(Pt/NC)andδ-MoC/NC to modify electronic structure of Pt via interfacial electron transfer to acquire Pt-MoC@NC catalyst with electron-deficient Pt nanoparticles,simultaneously endowing it with high mass activity and durability of alkaline HOR.Moreover,the unique structure of Pt-MoC@NC endows Pt with a high COtolerance at 1,000 ppm CO/H_(2),a quality that commercial Pt-C catalyst lacks.The theoretical calculations not only confirm the diffusion of electrons from Pt/NC to Mo C/NC could occur,but also demonstrate the negative shift of Pt d-band center for the optimized binding energies of*H,*OH and CO.展开更多
The increasing focus on electrocatalysis for sustainable hydrogen(H_(2))production has prompted significant interest in MXenes,a class of two-dimensional(2D)materials comprising metal carbides,carbonitrides,and nitrid...The increasing focus on electrocatalysis for sustainable hydrogen(H_(2))production has prompted significant interest in MXenes,a class of two-dimensional(2D)materials comprising metal carbides,carbonitrides,and nitrides.These materials exhibit intriguing chemical and physical properties,including excellent electrical conductivity and a large surface area,making them attractive candidates for the hydrogen evolution reaction(HER).This scientific review explores recent advancements in MXene-based electrocatalysts for HER kinetics.It discusses various compositions,functionalities,and explicit design principles while providing a comprehensive overview of synthesis methods,exceptional properties,and electro-catalytic approaches for H_(2) production via electrochemical reactions.Furthermore,challenges and future prospects in designing MXenes-based electrocatalysts with enhanced kinetics are highlighted,emphasizing the potential of incorporating different metals to expand the scope of electrochemical reactions.This review suggests possible efforts for developing advanced MXenes-based electrocatalysts,particularly for efficient H_(2) generation through electrochemical water-splitting reactions..展开更多
Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performan...Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performance for hydrogen evolution reaction(HER). With the VS concentration change from 2.4% to 8.5%, the H* adsorption strength on S sites changed and NiS_(2)-VS 5.9% shows the most optimized H* adsorption for HER with an ultralow onset potential(68 m V) and has long-term stability for 100 h in 1 M KOH media. In situ attenuated-total-reflection Fourier transform infrared spectroscopy(ATR-FTIRS) measurements are usually used to monitor the adsorption of intermediates. The S-H* peak of the Ni S_(2)-VS 5.9% appears at a very low voltage, which is favorable for the HER in alkaline media. Density functional theory calculations also demonstrate the Ni S_(2)-VS 5.9% has the optimal |ΔG^(H*)| of 0.17 e V. This work offers a simple and promising pathway to enhance catalytic activity via precise vacancies strategy.展开更多
While reliance on renewable energy resources has become a reality, there is still a need to deploy greener and more sustainable methods in order to achieve sustainable development goals. Indeed, green hydrogen is curr...While reliance on renewable energy resources has become a reality, there is still a need to deploy greener and more sustainable methods in order to achieve sustainable development goals. Indeed, green hydrogen is currently believed to be a reliable solution for global warming and the pollution challenges arising from fossil fuels, making it the resilient fuel of the future. However, the sustainability of green hydrogen technologies is yet to be achieved. In this context, generation of green hydrogen with the aid of deep eutectic solvents(DESs) as green mixtures has been demonstrated as a promising research area. This systematic review article covers green hydrogen generation through water splitting and biomass fermentation when DESs are utilized within the generation process. It also discusses the incorporation of DESs in fuel cell technologies. DESs can play a variety of roles such as solvent, electrolyte, or precursor;colloidal suspension and reaction medium;galvanic replacement, shape-controlling, decoration, or extractive agent;finally oxidant. These roles are relevant to several methods of green hydrogen generation, including electrocatalysis, photocatalysis, and fermentation. As such, it is of utmost importance to screen potential DES formulations and determine how they can function in and contribute throughout the green hydrogen mobility stages. The realization of super green hydrogen generation stands out as a pivotal milestone in our journey towards achieving a more sustainable form of development;DESs have great potential in making this milestone achievable. Overall, incorporating DESs in hydrogen generation constitutes a promising research area and offers potential scalability for green hydrogen production, storage,transport, and utilization.展开更多
The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimiz...The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents.Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions.In this study,the composition and content of liquefied solvents were analyzed.As model compounds,hexadecane,toluene,naphthalene,tetrahydronaphthalene,and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic,bicyclic,and tricyclic aromatic hydrocarbons.The solubility of hydrogen X(mol/mol)in pure solvent components and mixed solvents(alkanes and aromatics mixed in proportion to the chain alkanes+bicyclic aromatic hydrocarbons,bicyclic saturated aromatic hydrocarbons+bicyclic aromatic hydrocarbons,and bicyclic aromatic hydrocarbons+compounds containing het-eroatoms composed of mixed components)are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa.The results demonstrated that at high temperatures and pressures,the solubility of hydrogen in the solvent increases with the increase in temperature and pressure,with the pressure having a greater impact.Further-more,the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents,and the solubility of eicosanoids reaches a maximum of 0.296.The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number.The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons.The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents.Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms.展开更多
The valence states and coordination structures of doped heterometal atoms in two-dimensional(2D)nanomaterials lack predictable regulation strategies.Hence,a robust method is proposed to form unsaturated heteroatom clu...The valence states and coordination structures of doped heterometal atoms in two-dimensional(2D)nanomaterials lack predictable regulation strategies.Hence,a robust method is proposed to form unsaturated heteroatom clusters via the metal-vacancy restraint mechanism,which can precisely regulate the bonding and valence state of heterometal atoms doped in 2D molybdenum disulfide.The unsaturated valence state of heterometal Pt and Ru cluster atoms form a spatial coordination structure with Pt–S and Ru–O–S as catalytically active sites.Among them,the strong binding energy of negatively charged suspended S and O sites for H+,as well as the weak adsorption of positively charged unsaturated heterometal atoms for H*,reduces the energy barrier of the hydrogen evolution reaction proved by theoretical calculation.Whereupon,the electrocatalytic hydrogen evolution performance is markedly improved by the ensemble effect of unsaturated heterometal atoms and highlighted with an overpotential of 84 mV and Tafel slope of 68.5 mV dec^(−1).In brief,this metal vacancy-induced valence state regulation of heterometal can manipulate the coordination structure and catalytic activity of heterometal atoms doped in the 2D atomic lattice but not limited to 2D nanomaterials.展开更多
Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-gr...Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering.展开更多
基金supported by China Petrochemical Corporation(SINOPEC)(Contact No.106002000284)
文摘Ni-based, Fe-based and Co-based oxygen carriers with perovskite oxides used as the supports were prepared by citric acid complexation method, The oxygen carriers were characterized by thermal analysis, H2-temperature-programmed reduction and X-ray diffraction methods. Performance tests were evaluated through Chemical-Looping Hydrogen Genera- tion in a fixed-bed reactor operating at atmospheric pressure. The characterization results showed that all samples were composed of metal oxides and perovskite oxides. Performance results indicated that CH4 conversion over the oxygen car- riers decreased in the lbllowing order: NiO/LaNiO3〉Co203/LaCoO3〉Fe203/LaFeO3. The ability of NiO/LaNiO3 and F%O3/ LaFeO3 to decompose water was stronger than that of Co203/LaCoO3 as evidenced by our experiments. H2 amounting to 80 mL upon reacting on methane in every cycle could be completely oxidized by NiO/LaNiO3 at 900℃ in the period from the third cycle to the eighth cycle.
基金support of National Natural Science Foundation of China(22179027)gratefully acknowledged.This work was also supported by the Natural Science Foundation of Guangxi Province(2021GXNSFAA075063,2018GXNSFDA281005)+1 种基金the National Key Research and Development Program of China(2017YFE0105500)Science&Technology Research Project of Guangdong Province(2017A020216009).
文摘Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the use of Ca_(2)MnO_(4)-layered perovskites modified with NaNO_(3) dopants,serving as redox catalysts(also known as oxygen carriers),for the CL-ODH of ethane within a temperature range of 700-780℃.Our findings revealed that the incorporation of NaNO_(3) as a modifier significantly-nhanced the selectivity for-thylene generation from Ca_(2)MnO_(4).At 750℃and a gas hourly space velocity of 1300 h^(-1),we achieved an-thane conversion up to 68.17%,accompanied by a corresponding-thylene yield of 57.39%.X-ray photoelectron spectroscopy analysis unveiled that the doping NaNO_(3) onto Ca_(2)MnO_(4) not only played a role in reducing the oxidation state of Mn ions but also increased the lattice oxygen content of the redox catalyst.Furthermore,formation of NaNO_(3) shell on the surface of Ca_(2)MnO_(4) led to a reduction in the concentration of manganese sites and modulated the oxygen-releasing behavior in a step-wise manner.This modulation contributed significantly to the enhanced selectivity for ethylene of the NaNO_(3)-doped Ca_(2)MnO_(4) catalyst.These findings provide compelling evidence for the potential of Ca_(2)MnO_(4)-layered perovskites as promising redox catalysts in the context of CL-ODH reactions.
基金financially supported by the National Natural Science Foundation of China(No.5217042069)the Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)(No.YESS20200103)the Fundamental Research Funds for the Central Universities(No.265QZ2022004)。
文摘Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this study,nanocatalysts with ultralow Pt content,excellent performance,and carbon black as support were prepared through in-situ synthesis.These~2-nm particles uniformly and stably dispersed on carbon black because of the strong s-p-d orbital hybridizations between carbon black and Pt,which suppressed the agglomeration of Pt ions.This unique structure is beneficial for the hydrogen evolution reaction.The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction,exhibiting a potential of 100 mV at 100 mA·cm^(-2),which is comparable to those of commercial Pt/C catalysts.Mass activity(1.61 A/mg)was four times that of a commercial Pt/C catalyst(0.37 A/mg).The ultralow Pt loading(6.84wt%)paves the way for the development of next-generation electrocatalysts.
基金financially supported by the National Natural Science Foundation of China(Nos.21171018 and 51271021)the State Key Laboratory for Advanced Metals and Materials。
文摘This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.
基金supported by the National Natural Science Foundation of China,Nos.82271327 (to ZW),82072535 (to ZW),81873768 (to ZW),and 82001253 (to TL)。
文摘The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.
基金The authors acknowledge financial support from the National Key Research and Development Program of China(2018YFB0604900)the National Natural Science Foundation of China(21690084 and 21878219).
文摘The need for the separation of azeotropic mixtures for the production of high-end chemicals and resource recovery has spurred significant research into the development of new separation methods in the chemical industry.In this paper,a green and sustainable method for azeotrope separation is proposed based on a chemical-looping concept with the help of reversible-reaction-assisted distillation.The central concept in the chemical-looping separation(CLS)method is the selection of a reactant that can react with the azeotrope components and can also be recycled by the reverse reaction to close the loop and achieve cyclic azeotrope separation.This paper aims to provide an informative perspective on the fundamental theory and applications of the CLS method based on the separation principle,reactant selection,and case analysis,for example,the separation of alkenes,alkane,aromatics,and polyol products.In summary,we provide guidance and references for chemical separation process intensification in product refining and separation from azeotropic systems for the development of a more sustainable chemical industry.
基金Supported by the National Natural Science Foundation of China(51076154)National Key Technology Research&Development Program of 12 th Five-year of China(2011BAD15B05)
文摘Abstract:The aim of this research is to design and operate a 10 kW hot chemical-looping gasification(CLG)unit using Fe2O3/Al2O3as an oxygen carrier and saw dust as a fuel.The effect of the operation temperature on gas composition in the air reactor and the fuel reactor,and the carbon conversion of biomass to CO2and CO in the fuel reactor have been experimentally studied.A total60 h run has been obtained with the same batch of oxygen carrier of iron oxide supported with alumina.The results show that CO and H2concentrations are increased with increasing temperature in the fuel reactor.It is also found that with increasing fuel reactor temperature,both the amount of residual char in the fuel reactor and CO2concentration of the exit gas from the air reactor are degreased.Carbon conversion rate and gasification efficiency are increased by increasing temperature and H2production at 870℃reaches the highest rate.Scanning electron microscopy(SEM),X-ray diffraction(XRD)and BET-surface area tests have been used to characterize fresh and reacted oxygen carrier particles.The results display that the oxygen carrier activity is not declined and the specific surface area of the oxygen carrier particles is not decreased significantly.
基金supported by the Beijing Science and Technology Program(Grant no.Z131100005613045)the National Natural Science Foundation of China(Grant no.51306015)the Fundamental Research Funds for the Central Universities(Grant no.FRF-SD-12-013A)
文摘The cycle life of oxygen carrier(OC) is crucial to the practical applications of chemical looping combustion(CLC). Cycle performance of Cu/SiO2 prepared with a mechanical mixing method was evaluated based on a CLC process characterized with an added methane steam reforming step. The Cu/SiO2 exhibited high redox reactivity in the initial cycles, while the performance degraded with cycle number. Through characterization of the degraded Cu/SiO2, the performance degradation was mainly caused by the secondary particles' fragmentation and the fine particles' local agglomeration, which worsened the distribution and diffusion of the reactive gases in the packed bed. A regeneration method of the degraded OC based on re-granulation has been proposed, and its mechanism has been illustrated. With this method, the performance of the degraded OC through 420 redox cycles was recovered to a level close to the initial one.
基金supported by the National Natural Science Foundation of China(22108238,21878259)the Zhejiang Provincial Natural Science Foundation of China(LR18B060001)+5 种基金Anhui Provincial Natural Science Founda-tion(1908085QB68)the Natural Science Foundation of the Anhui Higher Education Institutions of China(KJ2020A0275)Major Science and Technology Project of Anhui Province(201903a05020055)Foundation of Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology(ZJKL-ACEMT-1802)China Postdoctoral Science Foundation(2019M662060,2020T130580)Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology(BM2012110).
文摘The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond.
基金supported by the National Natural Science Foundation of China(Grant No.42072168)the National Key R&D Program of China(Grant No.2019YFC0605405)the Fundamental Research Funds for the Central Universities(Grant No.2023ZKPYDC07)。
文摘The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantly,but the origin analysis of different gas types has previously been weak.Based on the geochemical parameters of gas samples from different depths and the analysis of geological settings,this research covers the diverse origins of natural gas in different strata.The gas components are mainly methane with a small amount of C_(2+),and non-hydrocarbon gases,including nitrogen(N_(2)),hydrogen(H_(2)),carbon dioxide(CO_(2)),and helium(He).At greater depth,the carbon isotope of methane becomes heavier,and the hydrogen isotope points to a lacustrine sedimentary environment.With increasing depth,the origins of N_(2)and CO_(2)change gradually from a mixture of organic and inorganic to inorganic.The origins of hydrogen gas are complex and include organic sources,water radiolysis,water-rock(Fe^(2+)-containing minerals)reactions,and mantle-derived.The shales of Denglouku and Shahezi Formations,as source rocks,provide the premise for generation and occurrence of organic gas.Furthermore,the deep faults and fluid activities in Basement Formation control the generation and migration of mantle-derived gas.The discovery of a high content of H_(2)in study area not only reveals the organic and inorganic association of natural-gas generation,but also provides a scientific basis for the exploration of deep hydrogen-rich gas.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20213030040590)the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2021K1A4A8A01079455)。
文摘Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51902101 and 21875203)the Natural Science Foundation of Hunan Province(Nos.2021JJ40044 and 2023JJ50287)Natural Science Foundation of Jiangsu Province(No.BK20201381).
文摘Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.
基金Agency for Science,Technology and Research(A*STAR),under the RIE2020 Advanced Manufacturing and Engineering(AME)Programmatic Grant(Grant no.A18B1b0061)。
文摘The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide inclusions.Scanning Kelvin Probe Force Microscopy demonstrated that MgO inclusions could act as cathodes for Mg corrosion,but their low conductivity likely precludes this.However,the density of state calculations through density functional theory using hybrid HSE06 functional revealed overlapping electronic states at the Mg/MgO interface,which facilitates electron transfers and participates in redox reactions.Subsequent determination of the hydrogen absorption energy at the Mg/MgO interface reveals it to be an excellent catalytic site,with HER being found to be a factor of 23x more efficient at the interface than on metallic Mg.The results not only support the plausibility of the Mg/MgO interface being an effective cathode to the adjacent anodic Mg matrix during corrosion but also contribute to the understanding of the enhanced cathodic activities observed during the anodic dissolution of magnesium.
基金supported by the National Natural Science Foundation of China (Grant Nos.52072272,52171145 and 22109120)the Zhejiang Provincial Natural Science Foundation of China (LQ21B030002)+1 种基金the Zhejiang Provincial Special Support Program for High-level Talents (2019R52042)the Key programs for Science and Technology Innovation of Wenzhou (ZG2022037)。
文摘The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to modulate its catalytic HOR performance,but at the cost of mass activity due to the coverage of modifiers on Pt surface.Herein,we constructed dual junctions'Pt/nitrogen-doped carbon(Pt/NC)andδ-MoC/NC to modify electronic structure of Pt via interfacial electron transfer to acquire Pt-MoC@NC catalyst with electron-deficient Pt nanoparticles,simultaneously endowing it with high mass activity and durability of alkaline HOR.Moreover,the unique structure of Pt-MoC@NC endows Pt with a high COtolerance at 1,000 ppm CO/H_(2),a quality that commercial Pt-C catalyst lacks.The theoretical calculations not only confirm the diffusion of electrons from Pt/NC to Mo C/NC could occur,but also demonstrate the negative shift of Pt d-band center for the optimized binding energies of*H,*OH and CO.
基金the financial support from the Sunway University International Research Network Grant Scheme(STR-IRNGSSET-GAMRG-01-2022)the Universiti Kebangsaan Malaysia Grant(GUP-2022-080)。
文摘The increasing focus on electrocatalysis for sustainable hydrogen(H_(2))production has prompted significant interest in MXenes,a class of two-dimensional(2D)materials comprising metal carbides,carbonitrides,and nitrides.These materials exhibit intriguing chemical and physical properties,including excellent electrical conductivity and a large surface area,making them attractive candidates for the hydrogen evolution reaction(HER).This scientific review explores recent advancements in MXene-based electrocatalysts for HER kinetics.It discusses various compositions,functionalities,and explicit design principles while providing a comprehensive overview of synthesis methods,exceptional properties,and electro-catalytic approaches for H_(2) production via electrochemical reactions.Furthermore,challenges and future prospects in designing MXenes-based electrocatalysts with enhanced kinetics are highlighted,emphasizing the potential of incorporating different metals to expand the scope of electrochemical reactions.This review suggests possible efforts for developing advanced MXenes-based electrocatalysts,particularly for efficient H_(2) generation through electrochemical water-splitting reactions..
基金funded by the National Natural Science Foundation of China (NSFC) (Nos. 22221001, 22201115, 21931001, and 21922105)the Special Fund Project of Guiding Scientific and Technological Innovation Development of Gansu Province (2019ZX–04)+3 种基金the 111 Project (B20027)by the Fundamental Research Funds for the Central Universities (lzujbky-2023-eyt03)support Natural Science Foundation of Gansu Providence (22JR5RA540)Gansu Province Youth Science and Technology Talent Promotion Project (GXH202220530-02)。
文摘Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performance for hydrogen evolution reaction(HER). With the VS concentration change from 2.4% to 8.5%, the H* adsorption strength on S sites changed and NiS_(2)-VS 5.9% shows the most optimized H* adsorption for HER with an ultralow onset potential(68 m V) and has long-term stability for 100 h in 1 M KOH media. In situ attenuated-total-reflection Fourier transform infrared spectroscopy(ATR-FTIRS) measurements are usually used to monitor the adsorption of intermediates. The S-H* peak of the Ni S_(2)-VS 5.9% appears at a very low voltage, which is favorable for the HER in alkaline media. Density functional theory calculations also demonstrate the Ni S_(2)-VS 5.9% has the optimal |ΔG^(H*)| of 0.17 e V. This work offers a simple and promising pathway to enhance catalytic activity via precise vacancies strategy.
基金the Ministry of Higher Education,Research and Innovation(MoHERI)Oman for their support of this research through TRC block funding Grant no.:BFP/RGP/EBR/22/378。
文摘While reliance on renewable energy resources has become a reality, there is still a need to deploy greener and more sustainable methods in order to achieve sustainable development goals. Indeed, green hydrogen is currently believed to be a reliable solution for global warming and the pollution challenges arising from fossil fuels, making it the resilient fuel of the future. However, the sustainability of green hydrogen technologies is yet to be achieved. In this context, generation of green hydrogen with the aid of deep eutectic solvents(DESs) as green mixtures has been demonstrated as a promising research area. This systematic review article covers green hydrogen generation through water splitting and biomass fermentation when DESs are utilized within the generation process. It also discusses the incorporation of DESs in fuel cell technologies. DESs can play a variety of roles such as solvent, electrolyte, or precursor;colloidal suspension and reaction medium;galvanic replacement, shape-controlling, decoration, or extractive agent;finally oxidant. These roles are relevant to several methods of green hydrogen generation, including electrocatalysis, photocatalysis, and fermentation. As such, it is of utmost importance to screen potential DES formulations and determine how they can function in and contribute throughout the green hydrogen mobility stages. The realization of super green hydrogen generation stands out as a pivotal milestone in our journey towards achieving a more sustainable form of development;DESs have great potential in making this milestone achievable. Overall, incorporating DESs in hydrogen generation constitutes a promising research area and offers potential scalability for green hydrogen production, storage,transport, and utilization.
基金the financial support from the National Key Research and Development Program of China(2022YFB4101302-01)the National Natural Science Foundation of China(22178243)the science and technology innovation project of China Shenhua Coal to Liquid and Chemical Company Limited(MZYHG-22–02).
文摘The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents.Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions.In this study,the composition and content of liquefied solvents were analyzed.As model compounds,hexadecane,toluene,naphthalene,tetrahydronaphthalene,and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic,bicyclic,and tricyclic aromatic hydrocarbons.The solubility of hydrogen X(mol/mol)in pure solvent components and mixed solvents(alkanes and aromatics mixed in proportion to the chain alkanes+bicyclic aromatic hydrocarbons,bicyclic saturated aromatic hydrocarbons+bicyclic aromatic hydrocarbons,and bicyclic aromatic hydrocarbons+compounds containing het-eroatoms composed of mixed components)are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa.The results demonstrated that at high temperatures and pressures,the solubility of hydrogen in the solvent increases with the increase in temperature and pressure,with the pressure having a greater impact.Further-more,the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents,and the solubility of eicosanoids reaches a maximum of 0.296.The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number.The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons.The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents.Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms.
基金supported by the National Natural Science Foundation of China(22205209,52202373 and U21A200972)China Postdoctoral Science Foundation(2022M722867)Key Research Project of Higher Education Institutions in Henan Province(23A530001)。
文摘The valence states and coordination structures of doped heterometal atoms in two-dimensional(2D)nanomaterials lack predictable regulation strategies.Hence,a robust method is proposed to form unsaturated heteroatom clusters via the metal-vacancy restraint mechanism,which can precisely regulate the bonding and valence state of heterometal atoms doped in 2D molybdenum disulfide.The unsaturated valence state of heterometal Pt and Ru cluster atoms form a spatial coordination structure with Pt–S and Ru–O–S as catalytically active sites.Among them,the strong binding energy of negatively charged suspended S and O sites for H+,as well as the weak adsorption of positively charged unsaturated heterometal atoms for H*,reduces the energy barrier of the hydrogen evolution reaction proved by theoretical calculation.Whereupon,the electrocatalytic hydrogen evolution performance is markedly improved by the ensemble effect of unsaturated heterometal atoms and highlighted with an overpotential of 84 mV and Tafel slope of 68.5 mV dec^(−1).In brief,this metal vacancy-induced valence state regulation of heterometal can manipulate the coordination structure and catalytic activity of heterometal atoms doped in the 2D atomic lattice but not limited to 2D nanomaterials.
基金supported by the National Natural Science Foundation of China(Grant Nos.22075159,22002066)Shandong Taishan Scholars Project(Grant Nos.ts20190932,tsqn202103058)+1 种基金Open Fund of Hubei Key Laboratory of Processing and Application of Catalytic Materials(Grant No.202203404)Postdoctoral Applied Research Project in Qingdao,and the Youth Innovation Team Project of Shandong Provincial Education Department(Grant No.2019KJC023).
文摘Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering.