Chemical mechanical polishing (CMP) was used to polish Lithium triborate (LiB3O5 or LBO) crystal. Taguchi method was applied for optimization of the polishing parameters. Material removal rate (MRR) and surface ...Chemical mechanical polishing (CMP) was used to polish Lithium triborate (LiB3O5 or LBO) crystal. Taguchi method was applied for optimization of the polishing parameters. Material removal rate (MRR) and surface roughness are considered as criteria for the optimization. The polishing pressure, the abrasive concentration and the table velocity are important parameters which influence MRR and surface roughness in CMP of LBO crystal. Experiment results indicate that for MRR the polishing pressure is the most significant polishing parameter followed by table velocity; while for the surface roughness, the abrasive concentration is the most important one. For high MRR in CMP of LBO ctystal the optimal conditions are: pressure 620 g/cm^2, concentration 5.0 wt pct, and velocity 60 r/min, respectively. For the best surface roughness the optimal conditions are: pressure 416 g/cm^2, concentration 5.0 wt pct, and velocity 40 r/min, respectively. The contributions of individual parameters for MRR and surface roughness were obtained.展开更多
Chemical Mechanical Polishing(CMP)工艺过程中产生大量运行数据,存在数据量庞大、数据种类复杂多样等特点。而且现有数据分析方法单一,造成数据资源浪费,限制研究人员对运行情况的掌握和优化。针对这些情况提出一种数据可视化分析系统...Chemical Mechanical Polishing(CMP)工艺过程中产生大量运行数据,存在数据量庞大、数据种类复杂多样等特点。而且现有数据分析方法单一,造成数据资源浪费,限制研究人员对运行情况的掌握和优化。针对这些情况提出一种数据可视化分析系统,对运行数据进行实时存储,提出4种可视化视图,针对不同数据分析需求,通过对比分析、关联分析和用户交互,可有效帮助研究人员探索工艺过程中影响工艺效果的原因,优化工艺参数,提升生产效率。展开更多
The surface polishing for silicon carbide (SIC) substrates was investigated and results were presented for mechanical polishing (MP) and chemo-mechanical polishing (CMP). High quality surfaces were obtained afte...The surface polishing for silicon carbide (SIC) substrates was investigated and results were presented for mechanical polishing (MP) and chemo-mechanical polishing (CMP). High quality surfaces were obtained after CMP with colloidal silica. The removal mechanism of scratches in MP and detailed physical and chemical process during CMP were analyzed. The effects of MP and CMP on the surface roughness were assessed by optical microscopy (OM), atomic force microscopy (AFM) and step profilometry. KOH etching and high resolution X-ray diffractometry (H RXRD) were applied to evaluate the subsurface damage of 6H-SiC substrates.展开更多
Homogenous precipitation and subsequent calcination has been used tosynthesize ultrafine ceria from cerium nitrate and urea solution. The ceria calcined from theprecursor inherit the size and morphology of it. The siz...Homogenous precipitation and subsequent calcination has been used tosynthesize ultrafine ceria from cerium nitrate and urea solution. The ceria calcined from theprecursor inherit the size and morphology of it. The size and morphology of the precursor areclosely related to the preparation process. The morphology, size and distribution of the precursorcould be tailored by changing the reaction condition and the ageing time. Monodispersed 200 nm sizedspherical particles is prepared by this method. The powder is used in the chemical-mechanicalpolishing of Si wafer. The average surface roughness of the polished Si wafer is 0.171 nm measuredby AFM.展开更多
In order to get atomic smooth rigid disk substrate surface, ultra-fined alumina slurry and nanometer silica slurry are prepared, and two steps chemical-mechanical polishing (CMP) of rigid disk substrate in the two s...In order to get atomic smooth rigid disk substrate surface, ultra-fined alumina slurry and nanometer silica slurry are prepared, and two steps chemical-mechanical polishing (CMP) of rigid disk substrate in the two slurries are studied. The results show that, during the first step CMP in the alumina slurry, a high material removal rate is reached, and the average roughness (Ra) and the average waviness (Wa) of the polished surfaces can be decreased from previous 1.4 nm and 1.6 nm to about 0.6 nm and 0.7 nm, respectively. By using the nanometer silica slurry and optimized polishing process parameters in the second step CMP, the Ra and the Wa of the polished surfaces can be further reduced to 0.038 nm and 0.06 am, respectively. Atom force microscopy (AFM) analysis shows that the final polished surfaces are ultra-smooth without micro-defects.展开更多
The electrochemical behavior of silicon wafer in alkaline slurry with nano-sized CeO2 abrasive was investigated.The variations of corrosion potential(φcorr)and corrosion current density(Jcorr)of the P-type(100)silico...The electrochemical behavior of silicon wafer in alkaline slurry with nano-sized CeO2 abrasive was investigated.The variations of corrosion potential(φcorr)and corrosion current density(Jcorr)of the P-type(100)silicon wafer with the slurry pH value and the concentration of abrasive CeO2 were studied by polarization curve technologies.The dependence of the polishing rate on the pH and the concentration of CeO2 in slurries during chemical mechanical polishing(CMP)were also studied.It is discovered that there is a large change of φcorr and Jcorr when slurry pH is altered and the Jcorr reaches the maximum(1.306 μA/cm2)at pH 10.5 when the material removal rate(MRR)comes to the fastest value.The Jcorr increases gradually from 0.994 μA/cm2 with 1% CeO2 to 1.304 μA/cm2 with 3% CeO2 and reaches a plateau with the further increase of CeO2 concentration.There is a considerable MRR in the slurry with 3% CeO2 at pH 10.5.The coherence between Jcorr and MRR elucidates that the research on the electrochemical behavior of silicon wafers in the alkaline slurry could offer theoretic guidance on silicon polishing rate and ensure to adjust optimal components of slurry.展开更多
Effects of abrasive concentration on material removal rate CMRR) and surtace quality m the chemical mecnamcal polishing (CMP) of light-emitting diode sapphire substrates are investigated. Experimental results show ...Effects of abrasive concentration on material removal rate CMRR) and surtace quality m the chemical mecnamcal polishing (CMP) of light-emitting diode sapphire substrates are investigated. Experimental results show that the MRR increases linearly with the abrasive concentration, while the rms roughness decreases with the increasing abrasive concentration. In addition, the in situ coefficient of friction (COF) is also conducted during the sapphire polishing process. The results present that COF increases sharply with the abrasive concentration up to 20 wt% and then shows a slight decrease from 20wt% to 40wt%. Temperature is a product of the friction force that is proportional to COF, which is an indicator for the mechanism of the sapphire CMP.展开更多
基金supported by the National Natural Science Foundation of China(No.50675104 and 50905086)Six High Talent Fund of Jiangsu Province(No.06-D-024)Talent Fund of NUAA(No.S0782-052)
文摘Chemical mechanical polishing (CMP) was used to polish Lithium triborate (LiB3O5 or LBO) crystal. Taguchi method was applied for optimization of the polishing parameters. Material removal rate (MRR) and surface roughness are considered as criteria for the optimization. The polishing pressure, the abrasive concentration and the table velocity are important parameters which influence MRR and surface roughness in CMP of LBO crystal. Experiment results indicate that for MRR the polishing pressure is the most significant polishing parameter followed by table velocity; while for the surface roughness, the abrasive concentration is the most important one. For high MRR in CMP of LBO ctystal the optimal conditions are: pressure 620 g/cm^2, concentration 5.0 wt pct, and velocity 60 r/min, respectively. For the best surface roughness the optimal conditions are: pressure 416 g/cm^2, concentration 5.0 wt pct, and velocity 40 r/min, respectively. The contributions of individual parameters for MRR and surface roughness were obtained.
基金supported by the National Natural Science Foundation of China(Grant No.60025409 and No.50472068)supported by the National High-Tech Research and Development Program of China(863 Program,Grant No.2001AA311080).
文摘The surface polishing for silicon carbide (SIC) substrates was investigated and results were presented for mechanical polishing (MP) and chemo-mechanical polishing (CMP). High quality surfaces were obtained after CMP with colloidal silica. The removal mechanism of scratches in MP and detailed physical and chemical process during CMP were analyzed. The effects of MP and CMP on the surface roughness were assessed by optical microscopy (OM), atomic force microscopy (AFM) and step profilometry. KOH etching and high resolution X-ray diffractometry (H RXRD) were applied to evaluate the subsurface damage of 6H-SiC substrates.
基金This project is supported by Provincial Natural Science Foundation of Jiangsu (No.BK2002010).
文摘Homogenous precipitation and subsequent calcination has been used tosynthesize ultrafine ceria from cerium nitrate and urea solution. The ceria calcined from theprecursor inherit the size and morphology of it. The size and morphology of the precursor areclosely related to the preparation process. The morphology, size and distribution of the precursorcould be tailored by changing the reaction condition and the ageing time. Monodispersed 200 nm sizedspherical particles is prepared by this method. The powder is used in the chemical-mechanicalpolishing of Si wafer. The average surface roughness of the polished Si wafer is 0.171 nm measuredby AFM.
基金This project is supported by National Basic Research Program of China (973 Program, N0.2003CB716201)National Natural Science Foundation of China (No.50575131)Science Foundation of Shanghai Municipal Commission of Science and Technology, China(No.0452nm013).
文摘In order to get atomic smooth rigid disk substrate surface, ultra-fined alumina slurry and nanometer silica slurry are prepared, and two steps chemical-mechanical polishing (CMP) of rigid disk substrate in the two slurries are studied. The results show that, during the first step CMP in the alumina slurry, a high material removal rate is reached, and the average roughness (Ra) and the average waviness (Wa) of the polished surfaces can be decreased from previous 1.4 nm and 1.6 nm to about 0.6 nm and 0.7 nm, respectively. By using the nanometer silica slurry and optimized polishing process parameters in the second step CMP, the Ra and the Wa of the polished surfaces can be further reduced to 0.038 nm and 0.06 am, respectively. Atom force microscopy (AFM) analysis shows that the final polished surfaces are ultra-smooth without micro-defects.
基金Project(2005DFBA028)supported by the International Cooperation of Science and Technology Ministry of ChinaProject(LA07023)supported by the National Undergraduate Innovative Experiment Plan
文摘The electrochemical behavior of silicon wafer in alkaline slurry with nano-sized CeO2 abrasive was investigated.The variations of corrosion potential(φcorr)and corrosion current density(Jcorr)of the P-type(100)silicon wafer with the slurry pH value and the concentration of abrasive CeO2 were studied by polarization curve technologies.The dependence of the polishing rate on the pH and the concentration of CeO2 in slurries during chemical mechanical polishing(CMP)were also studied.It is discovered that there is a large change of φcorr and Jcorr when slurry pH is altered and the Jcorr reaches the maximum(1.306 μA/cm2)at pH 10.5 when the material removal rate(MRR)comes to the fastest value.The Jcorr increases gradually from 0.994 μA/cm2 with 1% CeO2 to 1.304 μA/cm2 with 3% CeO2 and reaches a plateau with the further increase of CeO2 concentration.There is a considerable MRR in the slurry with 3% CeO2 at pH 10.5.The coherence between Jcorr and MRR elucidates that the research on the electrochemical behavior of silicon wafers in the alkaline slurry could offer theoretic guidance on silicon polishing rate and ensure to adjust optimal components of slurry.
基金Supported by the National Major Scientific and Technological Special Project during the Twelfth Five-year Plan Period under Grant No 2011ZX02704the National Natural Science Foundation of China under Grant No 51205387the Science and Technology Commission of Shanghai under Grant Nos llnm0500300 and 14XD1425300
文摘Effects of abrasive concentration on material removal rate CMRR) and surtace quality m the chemical mecnamcal polishing (CMP) of light-emitting diode sapphire substrates are investigated. Experimental results show that the MRR increases linearly with the abrasive concentration, while the rms roughness decreases with the increasing abrasive concentration. In addition, the in situ coefficient of friction (COF) is also conducted during the sapphire polishing process. The results present that COF increases sharply with the abrasive concentration up to 20 wt% and then shows a slight decrease from 20wt% to 40wt%. Temperature is a product of the friction force that is proportional to COF, which is an indicator for the mechanism of the sapphire CMP.