Composites of carbon aerogel and graphite oxide(GO) were synthesized using a self-assembly method based on dispersive forces. Their surface was modified by treatment in hydrogen sulfide at 650 and800 ℃. The samples...Composites of carbon aerogel and graphite oxide(GO) were synthesized using a self-assembly method based on dispersive forces. Their surface was modified by treatment in hydrogen sulfide at 650 and800 ℃. The samples obtained were characterized by adsorption of nitrogen, TA-MS, XPS, potentiometric titration, and HRTEM and tested as catalysts for oxygen reduction reactions(ORR) in an alkaline medium.The synergistic effect of the composite(electrical conductivity, porosity and surface chemistry) leads to a good ORR catalytic activity. The onset potential for the composite of carbon aerogel heated at 800 ℃ is shifted to a more positive value and the number of electron transfer was 2e-at the potential 0.68 V versus RHE and it increased to 4e-with an increase in the negative values of the potential. An excellent tolerance to methanol crossover was also recorded.展开更多
Samples of fog water collected in the area of Guangzhou during February, March and April of 2005 are used in this work to study the chemical composition of fog water in polluting fog there. Three typical episodes of p...Samples of fog water collected in the area of Guangzhou during February, March and April of 2005 are used in this work to study the chemical composition of fog water in polluting fog there. Three typical episodes of polluting fog are analyzed in terms of ionic concentration and their possible sources. It is found that the concentration of various ions in fog water is much higher than those in rainwater. Fog not only blocks visual range but contains liquid particles that result in high degree of pollution and are very harmful to human health. SO4= is the anion with the highest concentration in fog water, followed by NO3-. For the cation, Ca++ and NH4+ are the highest in concentration. It is then known that rainwater is more acidic than fog water, indicating that ionic concentration of fog water is much higher than that of rainwater, but there are much more buffering materials in fog water, like NH4+ and Ca++. There is significant enrichment of Ca++, SO4=, and Mg++ in fog water. In the Guangzhou area, fog water from polluting fog is mainly influenced continental environment and human activity. The episodes of serious fog pollution during the time have immediate relationships with the presence of abundant water vapor and large amount of polluting aerosol particles.展开更多
基金supported by the Spanish Ministry of Economy and Competitiveness (Project CTQ2012-37925-C03-03)FEDER fundsby the Hungarian National Fund OTKA K109558
文摘Composites of carbon aerogel and graphite oxide(GO) were synthesized using a self-assembly method based on dispersive forces. Their surface was modified by treatment in hydrogen sulfide at 650 and800 ℃. The samples obtained were characterized by adsorption of nitrogen, TA-MS, XPS, potentiometric titration, and HRTEM and tested as catalysts for oxygen reduction reactions(ORR) in an alkaline medium.The synergistic effect of the composite(electrical conductivity, porosity and surface chemistry) leads to a good ORR catalytic activity. The onset potential for the composite of carbon aerogel heated at 800 ℃ is shifted to a more positive value and the number of electron transfer was 2e-at the potential 0.68 V versus RHE and it increased to 4e-with an increase in the negative values of the potential. An excellent tolerance to methanol crossover was also recorded.
基金Natural Science Foundation of China (40375002, 40418008, 40775011, U0733004)Project 863 (2006AA06A306, 2006AA06A308)+3 种基金National Basic Research Program of China (973 Program):2005CB422207Natural Science Foundation of Guangdong Province (033029)Project of Key Scientific Research of Guangdong Province (2004A30401002, 2005B32601011)Project of Applied Fundamental Research of Guangzhou (2004J1-0021)
文摘Samples of fog water collected in the area of Guangzhou during February, March and April of 2005 are used in this work to study the chemical composition of fog water in polluting fog there. Three typical episodes of polluting fog are analyzed in terms of ionic concentration and their possible sources. It is found that the concentration of various ions in fog water is much higher than those in rainwater. Fog not only blocks visual range but contains liquid particles that result in high degree of pollution and are very harmful to human health. SO4= is the anion with the highest concentration in fog water, followed by NO3-. For the cation, Ca++ and NH4+ are the highest in concentration. It is then known that rainwater is more acidic than fog water, indicating that ionic concentration of fog water is much higher than that of rainwater, but there are much more buffering materials in fog water, like NH4+ and Ca++. There is significant enrichment of Ca++, SO4=, and Mg++ in fog water. In the Guangzhou area, fog water from polluting fog is mainly influenced continental environment and human activity. The episodes of serious fog pollution during the time have immediate relationships with the presence of abundant water vapor and large amount of polluting aerosol particles.