期刊文献+
共找到13,105篇文章
< 1 2 250 >
每页显示 20 50 100
Pulmonary Edema and Pleural Effusion Detection Using Efficient Net-V1-B4 Architecture and AdamW Optimizer from Chest X-Rays Images
1
作者 Anas AbuKaraki Tawfi Alrawashdeh +4 位作者 Sumaya Abusaleh Malek Zakarya Alksasbeh Bilal Alqudah Khalid Alemerien Hamzah Alshamaseen 《Computers, Materials & Continua》 SCIE EI 2024年第7期1055-1073,共19页
This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was f... This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was formed by combining 28,309 samples from the ChestX-ray14,PadChest,and CheXpert databases,with 10,287,6022,and 12,000 samples representing Pleural Effusion,Pulmonary Edema,and Normal cases,respectively.Consequently,the preprocessing step involves applying the Contrast Limited Adaptive Histogram Equalization(CLAHE)method to boost the local contrast of the X-ray samples,then resizing the images to 380×380 dimensions,followed by using the data augmentation technique.The classification task employs a deep learning model based on the EfficientNet-V1-B4 architecture and is trained using the AdamW optimizer.The proposed multiclass system achieved an accuracy(ACC)of 98.3%,recall of 98.3%,precision of 98.7%,and F1-score of 98.7%.Moreover,the robustness of the model was revealed by the Receiver Operating Characteristic(ROC)analysis,which demonstrated an Area Under the Curve(AUC)of 1.00 for edema and normal cases and 0.99 for effusion.The experimental results demonstrate the superiority of the proposedmulti-class system,which has the potential to assist clinicians in timely and accurate diagnosis,leading to improved patient outcomes.Notably,ablation-CAM visualization at the last convolutional layer portrayed further enhanced diagnostic capabilities with heat maps on X-ray images,which will aid clinicians in interpreting and localizing abnormalities more effectively. 展开更多
关键词 Image classification decision support system EfficientNet-V1-B4 AdamW optimizer pulmonary edema pleural effusion chest x-rays
下载PDF
Histogram Matched Chest X-Rays Based Tuberculosis Detection Using CNN
2
作者 Joe Louis Paul Ignatius Sasirekha Selvakumar +3 位作者 Kavin Gabriel Joe Louis Paul Aadhithya B.Kailash S.Keertivaas S.A.J.Akarvin Raja Prajan 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期81-97,共17页
Tuberculosis(TB)is a severe infection that mostly affects the lungs and kills millions of people’s lives every year.Tuberculosis can be diagnosed using chest X-rays(CXR)and data-driven deep learning(DL)approaches.Bec... Tuberculosis(TB)is a severe infection that mostly affects the lungs and kills millions of people’s lives every year.Tuberculosis can be diagnosed using chest X-rays(CXR)and data-driven deep learning(DL)approaches.Because of its better automated feature extraction capability,convolutional neural net-works(CNNs)trained on natural images are particularly effective in image cate-gorization.A combination of 3001 normal and 3001 TB CXR images was gathered for this study from different accessible public datasets.Ten different deep CNNs(Resnet50,Resnet101,Resnet152,InceptionV3,VGG16,VGG19,DenseNet121,DenseNet169,DenseNet201,MobileNet)are trained and tested for identifying TB and normal cases.This study presents a deep CNN approach based on histogram matched CXR images that does not require object segmenta-tion of interest,and this coupled methodology of histogram matching with the CXRs improves the accuracy and detection performance of CNN models for TB detection.Furthermore,this research contains two separate experiments that used CXR images with and without histogram matching to classify TB and non-TB CXRs using deep CNNs.It was able to accurately detect TB from CXR images using pre-processing,data augmentation,and deep CNN models.Without histogram matching the best accuracy,sensitivity,specificity,precision and F1-score in the detection of TB using CXR images among ten models are 99.25%,99.48%,99.52%,99.48%and 99.22%respectively.With histogram matching the best accuracy,sensitivity,specificity,precision and F1-score are 99.58%,99.82%,99.67%,99.65%and 99.56%respectively.The proposed meth-odology,which has cutting-edge performance,will be useful in computer-assisted TB diagnosis and aids in minimizing irregularities in TB detection in developing countries. 展开更多
关键词 Tuberculosis detection chest x-ray(CXR) convolutional neural networks(CNNs) transfer learning histogram matching
下载PDF
Diagnostic Value of the Thoracic Ultrasonography Compared to Conventional Chest X-Rays in Pneumonia for Children between 0 to 15 Years: Case Study in Two Hospitals in Yaoundé 被引量:2
3
作者 Seme Engoumou Ambroise Merci Mbede Maggy +3 位作者 Awana Armel Philippe Bilounga Ndengue Priscille Edith Onguene Julienne Zeh Odile Fernande 《Open Journal of Radiology》 2019年第1期10-19,共10页
Introduction: The diagnosis of pneumonia is usually made based on clinical manifestations and chest X-ray. The use of ultrasound in detecting pulmonary diseases in general, and especially consolidation syndrome has be... Introduction: The diagnosis of pneumonia is usually made based on clinical manifestations and chest X-ray. The use of ultrasound in detecting pulmonary diseases in general, and especially consolidation syndrome has been demonstrated. The objective of this study was to determine the accuracy of thoracic ultrasound compared to chest X-ray in the diagnosis of infectious pneumonia in children. Methods: Children between 0 to 15 years were included in our study. The lung ultrasound results obtained were compared with those of the chest X-ray used as the reference. Our data were introduced into the EpiInfo 3.5.4 software and analyzed with the EpiInfo 3.5.4 and IBMSPSS Statistics version 20.0 softwares. Microsoft Office Excel 2016 was used to produce Charts. Continuous quantitative variables were presented. Cohen’s Kappa concordance test was applied with confidence interval of 95%. Results: 52 children were enrolled in the study. In imaging, the dominant sign was consolidation syndrome (75.0%) of cases by chest radiography, and in 78.8% of cases by lung ultrasound (p Conclusion: Our study demonstrated that lung echography is a non-ionizing and reliable tool in the diagnosis of childhood’s pneumonia. 展开更多
关键词 LUNG Ultrasound chest X-Ray PNEUMONIA CHILDREN Yaoundé Cameroon
下载PDF
Chest X-rays in detecting injuries caused by blunt trauma
4
作者 Kadir Agladioglu Mustafa Serinken +3 位作者 Onur Dal Halil Beydilli Cenker Eken Ozgur Karcioglu 《World Journal of Emergency Medicine》 CAS 2016年第1期55-58,共4页
BACKGROUND:The appropriate sequence of different imagings and indications of thoracic computed tomography(TCT)in evaluating chest trauma have not yet been clarified at present.The current study was undertaken to deter... BACKGROUND:The appropriate sequence of different imagings and indications of thoracic computed tomography(TCT)in evaluating chest trauma have not yet been clarified at present.The current study was undertaken to determine the value of chest X-ray(CXR)in detecting chest injuries in patients with blunt trauma.METHODS:A total of 447 patients with blunt thoracic trauma who had been admitted to the emergency department(ED)in the period of 2009–2013 were retrospectively reviewed.The patients met inclusion criteria(age>8 years,blunt injury to the chest,hemodynamically stable,and neurologically intact)and underwent both TCT and upright CXR in the ED.Radiological imagings were re-interpreted after they were collected from the hospital database by two skilled radiologists.RESULTS:Of the 447 patients,309(69.1%)were male.The mean age of the 447 patients was 39.5±19.2(range 9 and 87 years).158(35.3%)patients were injured in motor vehicle accidents(MVA).CXR showed the highest sensitivity in detecting clavicle fractures[95%CI 78.3(63.6–89)]but the lowest in pneuomediastinum[95%CI 11.8(1.5–36.4)].The specificity of CXR was close to 100%in detecting a wide array of entities.CONCLUSION:CXR remains to be the first choice in hemodynamically unstable patients with blunt chest trauma.Moreover,stable patients with normal CXR are candidates who should undergo TCT if significant injury has not been ruled out. 展开更多
关键词 chest Blunt trauma x-rays Computed tomography Emergency department
下载PDF
Relationship between neonatal respiratory distress syndrome pulmonary ultrasonography and respiratory distress score,oxygenation index,and chest radiography grading
5
作者 Hai Yang Li-Jun Gao +5 位作者 Jing Lei Qiang Li Liu Cui Xiao-Hua Li Wu-Xuan Yin Sen-Hua Tian 《World Journal of Clinical Cases》 SCIE 2024年第20期4154-4165,共12页
BACKGROUND Accurate condition assessment is critical for improving the prognosis of neonatal respiratory distress syndrome(RDS),but current assessment methods for RDS pose a cumulative risk of harm to neonates.Thus,a ... BACKGROUND Accurate condition assessment is critical for improving the prognosis of neonatal respiratory distress syndrome(RDS),but current assessment methods for RDS pose a cumulative risk of harm to neonates.Thus,a less harmful method for assessing the health of neonates with RDS is needed.AIM To analyze the relationships between pulmonary ultrasonography and respiratory distress scores,oxygenation index,and chest X-ray grade of neonatal RDS to identify predictors of neonatal RDS severity.METHODS This retrospective study analyzed the medical information of 73 neonates with RDS admitted to the neonatal intensive care unit of Liupanshui Maternal and Child Care Service Center between April and December 2022.The pulmonary ultrasonography score,respiratory distress score,oxygenation index,and chest Xray grade of each newborn before and after treatment were collected.Spearman correlation analysis was performed to determine the relationships among these values and neonatal RDS severity.RESULTS The pulmonary ultrasonography score,respiratory distress score,oxygenation index,and chest X-ray RDS grade of the neonates were significantly lower after treatment than before treatment(P<0.05).Spearman correlation analysis showed that before and after treatment,the pulmonary ultrasonography score of neonates with RDS was positively correlated with the respiratory distress score,oxygenation index,and chest X-ray grade(ρ=0.429–0.859,P<0.05).Receiver operating characteristic curve analysis indicated that pulmonary ultrasonography screening effectively predicted the severity of neonatal RDS(area under the curve=0.805–1.000,P<0.05).CONCLUSION The pulmonary ultrasonography score was significantly associated with the neonatal RDS score,oxygenation index,and chest X-ray grade.The pulmonary ultrasonography score was an effective predictor of neonatal RDS severity. 展开更多
关键词 Neonatal respiratory distress syndrome Pulmonary ultrasonography Ultrasonography score Respiratory distress score Oxygenation index chest X-ray grading
下载PDF
Chest Radiography: General Practitioners’ Compliance with Recommendations
6
作者 Milckisédek Judicaël Marouruana Some Aïda Ida Tankoano +3 位作者 Pakisba Ali Ouedraogo Bassirou Kindo Nina-Astrid Ouedraogo Mohammed Ali Harchaoui 《Open Journal of Medical Imaging》 2024年第2期56-63,共8页
Introduction: Chest radiography is the most frequently prescribed imaging test in general practice in France. We aimed to assess the extent to which general practitioners follow the recommendations of the French Natio... Introduction: Chest radiography is the most frequently prescribed imaging test in general practice in France. We aimed to assess the extent to which general practitioners follow the recommendations of the French National Authority for Health in prescribing chest radiography. Methodology: We conducted a retrospective analysis study, in two radiology centers belonging to the same group in Saint-Omer and Aire-sur-la-Lys, of requests for chest radiography sent by general practitioners over the winter period between December 22, 2013, and March 21, 2014, for patients aged over 18 years. Results: One hundred and seventy-seven requests for chest X-rays were analyzed, 71.75% of which complied with recommendations. The most frequent reason was the search for bronchopulmonary infection, accounting for 70.08% of prescriptions, followed by 11.2% for requests to rule out pulmonary neoplasia, whereas the latter reason did not comply with recommendations. Chest X-rays contributed to a positive diagnosis in 28.81% of cases. The positive diagnosis was given by 36.22% of the recommended chest X-rays, versus 10% for those not recommended. Conclusion: In most cases, general practitioners follow HAS recommendations for prescribing chest X-rays. Non-recommended chest X-rays do not appear to make a major contribution to diagnosis or patient management, confirming the value of following the recommendations of the French National Authority for Health. 展开更多
关键词 chest X-Ray RECOMMENDATIONS General Practitioners PRESCRIPTION
下载PDF
Life Time Attributable Cancer Risk Estimated Using Scanner Reported Dose Length Product during Chest Computed Tomography Imaging in Young Children
7
作者 Mousa Bakkari Khaled Soliman +3 位作者 Abdullah Alrushoud Marwan Fahad Alosaimi Hanaa Alsheikh Abdelwahed Alhejaili 《Open Journal of Radiology》 2024年第2期74-82,共9页
This study aims to estimate the lifetime attributable cancer risk (LAR) for pediatric chest computed tomography (CT) examinations in five age groups using recently published age and region-specific conversion coeffici... This study aims to estimate the lifetime attributable cancer risk (LAR) for pediatric chest computed tomography (CT) examinations in five age groups using recently published age and region-specific conversion coefficients multiplying the widely available scanner registered dose length products (DLP) displayed on the CT console and hence calculating the Effective Dose (ED). The ED is then multiplied by the International Commission on Radiological Protection (ICRP) published risk factor for LAR. The obtained LAR values are compared with the international literature. Factors that may affect the LAR value are reported and discussed. The study included one hundred twenty five chest CT examinations for both males and females aged from less than one year to fifteen years. The patients reported data are from one single medical institution and using two CT scanners from June 2022 to December 2023. The results of this study may serve as benchmark for institutional radiation dose reference levels and risk estimation. 展开更多
关键词 Cancer Risk LAR chest CT Pediatric Radiology Radiation Dose DLP
下载PDF
Comparison of efficacy of lung ultrasound and chest X-ray in diagnosing pulmonary edema and pleural effusion in ICU patients: A single centre, prospective, observational study
8
作者 Kunal Tewari Sumanth Pelluru +5 位作者 Deepak Mishra Nitin Pahuja Akash Ray Mohapatra Jyotsna Sharma Om Bahadur Thapa Manjot Multani 《Open Journal of Anesthesiology》 2024年第3期41-50,共10页
Background and Aims While chest X-ray (CXR) has been a conventional tool in intensive care units (ICUs) to identify lung pathologies, computed tomography (CT) scan remains the gold standard. Use of lung ultrasound (LU... Background and Aims While chest X-ray (CXR) has been a conventional tool in intensive care units (ICUs) to identify lung pathologies, computed tomography (CT) scan remains the gold standard. Use of lung ultrasound (LUS) in resource-rich ICUs is still under investigation. The present study compares the utility of LUS to that of CXR in identifying pulmonary edema and pleural effusion in ICU patients. In addition, consolidation and pneumothorax were analyzed as secondary outcome measures. Material and Methods This is a prospective, single centric, observational study. Patients admitted in ICU were examined for lung pathologies, using LUS by a trained intensivist;and CXR done within 4 hours of each other. The final diagnosis was ascertained by an independent senior radiologist, based on the complete medical chart including clinical findings and the results of thoracic CT, if available. The results were compared and analyzed. Results Sensitivity, specificity and diagnostic accuracy of LUS was 95%, 94.4%, 94.67% for pleural effusion;and 98.33%, 97.78%, 98.00% for pulmonary edema respectively. Corresponding values with CXR were 48.33%, 76.67%, 65.33% for pleural effusion;and 36.67%, 82.22% and 64.00% for pulmonary edema respectively. Sensitivity, specificity and diagnostic accuracy of LUS was 91.30%, 96.85%, 96.00% for consolidation;and 100.00%, 79.02%, 80.00% for pneumothorax respectively. Corresponding values with CXR were 60.87%, 81.10%, 78.00% for consolidation;and 71.3%, 97.20%, 96.00% for pneumothorax respectively. Conclusion LUS has better diagnostic accuracy in diagnosis of pleural effusion and pulmonary edema when compared with CXR and is thus recommended as an effective alternative for diagnosis of these conditions in acute care settings. Our study recommends that a thoracic CT scan can be avoided in most of such cases. 展开更多
关键词 chest X ray (CXR) CONSOLIDATION Pulmonary edema Pleural effusion Lung ultrasound (LUS) PNEUMOTHORAX
下载PDF
A Hybrid Classification and Identification of Pneumonia Using African Buffalo Optimization and CNN from Chest X-Ray Images
9
作者 Nasser Alalwan Ahmed I.Taloba +2 位作者 Amr Abozeid Ahmed Ibrahim Alzahrani Ali H.Al-Bayatti 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2497-2517,共21页
An illness known as pneumonia causes inflammation in the lungs.Since there is so much information available fromvarious X-ray images,diagnosing pneumonia has typically proven challenging.To improve image quality and s... An illness known as pneumonia causes inflammation in the lungs.Since there is so much information available fromvarious X-ray images,diagnosing pneumonia has typically proven challenging.To improve image quality and speed up the diagnosis of pneumonia,numerous approaches have been devised.To date,several methods have been employed to identify pneumonia.The Convolutional Neural Network(CNN)has achieved outstanding success in identifying and diagnosing diseases in the fields of medicine and radiology.However,these methods are complex,inefficient,and imprecise to analyze a big number of datasets.In this paper,a new hybrid method for the automatic classification and identification of Pneumonia from chest X-ray images is proposed.The proposed method(ABOCNN)utilized theAfrican BuffaloOptimization(ABO)algorithmto enhanceCNNperformance and accuracy.The Weinmed filter is employed for pre-processing to eliminate unwanted noises from chest X-ray images,followed by feature extraction using the Grey Level Co-Occurrence Matrix(GLCM)approach.Relevant features are then selected from the dataset using the ABO algorithm,and ultimately,high-performance deep learning using the CNN approach is introduced for the classification and identification of Pneumonia.Experimental results on various datasets showed that,when contrasted to other approaches,the ABO-CNN outperforms them all for the classification tasks.The proposed method exhibits superior values like 96.95%,88%,86%,and 86%for accuracy,precision,recall,and F1-score,respectively. 展开更多
关键词 African buffalo optimization convolutional neural network PNEUMONIA X-RAY
下载PDF
Artificial intelligence models based on non-contrast chest CT for measuring bone mineral density
10
作者 DUAN Wei YANG Guoqing +6 位作者 LI Yang SHI Feng YANG Lian XIONG Xin CHEN Bei LI Yong FU Quanshui 《中国医学影像技术》 CSCD 北大核心 2024年第8期1231-1235,共5页
Objective To observe the value of artificial intelligence(AI)models based on non-contrast chest CT for measuring bone mineral density(BMD).Methods Totally 380 subjects who underwent both non-contrast chest CT and quan... Objective To observe the value of artificial intelligence(AI)models based on non-contrast chest CT for measuring bone mineral density(BMD).Methods Totally 380 subjects who underwent both non-contrast chest CT and quantitative CT(QCT)BMD examination were retrospectively enrolled and divided into training set(n=304)and test set(n=76)at a ratio of 8∶2.The mean BMD of L1—L3 vertebrae were measured based on QCT.Spongy bones of T5—T10 vertebrae were segmented as ROI,radiomics(Rad)features were extracted,and machine learning(ML),Rad and deep learning(DL)models were constructed for classification of osteoporosis(OP)and evaluating BMD,respectively.Receiver operating characteristic curves were drawn,and area under the curves(AUC)were calculated to evaluate the efficacy of each model for classification of OP.Bland-Altman analysis and Pearson correlation analysis were performed to explore the consistency and correlation of each model with QCT for measuring BMD.Results Among ML and Rad models,ML Bagging-OP and Rad Bagging-OP had the best performances for classification of OP.In test set,AUC of ML Bagging-OP,Rad Bagging-OP and DL OP for classification of OP was 0.943,0.944 and 0.947,respectively,with no significant difference(all P>0.05).BMD obtained with all the above models had good consistency with those measured with QCT(most of the differences were within the range of Ax-G±1.96 s),which were highly positively correlated(r=0.910—0.974,all P<0.001).Conclusion AI models based on non-contrast chest CT had high efficacy for classification of OP,and good consistency of BMD measurements were found between AI models and QCT. 展开更多
关键词 OSTEOPOROSIS bone density tomography X-ray computed artificial intelligence
下载PDF
Chest CT quantitative parameters in patients with acute exacerbation of chronic obstructive pulmonary disease:Correlations with blood eosinophil level
11
作者 YANG Lu SHENG Yadan +7 位作者 YANG Kai HE Liyu GU Huihui SUN Guoqing CHEN Weiting ZHU Bingjie CHEN Yanrong JIN Chenwang 《中国医学影像技术》 CSCD 北大核心 2024年第8期1189-1193,共5页
Objective To observe the correlations of chest CT quantitative parameters in patients with acute exacerbation of chronic obstructive pulmonary disease(AECOPD)with blood eosinophil(EOS)level.Methods Chest CT data of 16... Objective To observe the correlations of chest CT quantitative parameters in patients with acute exacerbation of chronic obstructive pulmonary disease(AECOPD)with blood eosinophil(EOS)level.Methods Chest CT data of 162 AECOPD patients with elevated eosinophils were retrospectively analyzed.The patients were divided into low EOS group(n=105)and high EOS group(n=57)according to the absolute counting of blood EOS.The quantitative CT parameters,including the number of whole lung bronchi and the volume of blood vessels,low-attenuation area percentage(LAA%)of whole lung,of left/right lung and each lobe of lung,as well as the luminal diameter(LD),wall thickness(WT),wall area(WA)and WA percentage of total bronchial cross-section(WA%)of grade 3 to 8 bronchi were compared between groups.Spearman correlations were performed to analyze the correlations of quantitative CT parameters with blood EOS level.Results LAA%of the whole lung,of the left/right lung and each lobe of lung,as well as of the upper lobe of right lung LD grade 4,middle lobe of right lung WT grade 5,upper lobe of right lung WA grade 4,middle lobe of right lung WA grade 5 and lower lobe of left lung WA grade 3 in low EOS group were all higher than those in high EOS group(all P<0.05).Except for the upper lobe of right lung LD grade 4,the above quantitative CT indexes being significant different between groups were all weakly and negatively correlated with blood EOS level(r=-0.335 to-0.164,all P<0.05).Conclusion Chest CT quantitative parameters of AECOPD patients were correlated with blood EOS level,among which LAA%,a part of WT and WA were all weakly negatively correlated with blood EOS level. 展开更多
关键词 pulmonary disease chronic obstructive EOSINOPHILS tomography X-ray computed
下载PDF
Atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction
12
作者 Ding-Han Zhu Xiong Zhang +3 位作者 Xiao-Qiang Li Peng Li Yan-Bin Wang Shuang Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期40-52,共13页
In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detect... In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects. 展开更多
关键词 High-altitude nuclear detonation Atmospheric transmission Pulsed x-rays Scattering correction Analytical method Monte Carlo method
下载PDF
Rib Osteosynthesis for Sub-Acute Management of a Flail Chest in a Tertiary Centre in a Low-Middle Income Country of Sub-Saharan Africa: Case Report at Douala Laquintinie Hospital
13
作者 Fabrice Stéphane Arroye Betou Nyankoue Mebouinz Ferdinand +11 位作者 Guy Aristide Bang Kobe Folkabo Zephany Banga Nkomo Douglas Moussa Seck Diop Abdoul Lahad Mbeng Marcella Derboise Christelle Biyouma Noel Essomba Souleyman Diatta Handy Eone Daniel Arthur Essomba Hassan Ndiaye Maurice Aurelien Sosso 《Open Journal of Thoracic Surgery》 2024年第1期1-16,共16页
Background: Costal fracture surgical is still a debate, therefore we shall select between early and delay surgical management. Case Report: We are reporting two cases of post road traffic clash delay ribs fractures os... Background: Costal fracture surgical is still a debate, therefore we shall select between early and delay surgical management. Case Report: We are reporting two cases of post road traffic clash delay ribs fractures osteosynthesis involving a 63-year-old man with multistage fractures on the left and pulmonary pinning of one of the costal arches, complicated by a homolateral haemothorax and a 41-year-old man with a bilateral flail chest. Conclusion: The simple postoperative course and the immediate postoperative improvement in the patient’s clinical respiratory condition enabled us to discuss the time frame for management, in this case the indication for early or later surgery. 展开更多
关键词 Flail chest Fixation Plate Rib Fracture OSTEOSYNTHESIS
下载PDF
Automated body composition analysis system based on chest CT for evaluating content of muscle and adipose
14
作者 YANG Jie LIU Yanli +2 位作者 CHEN Xiaoyan CHEN Tianle LIU Qi 《中国医学影像技术》 CSCD 北大核心 2024年第8期1242-1248,共7页
Objective To establish a body composition analysis system based on chest CT,and to observe its value for evaluating content of chest muscle and adipose.Methods T7—T8 layer CT images of 108 pneumonia patients were col... Objective To establish a body composition analysis system based on chest CT,and to observe its value for evaluating content of chest muscle and adipose.Methods T7—T8 layer CT images of 108 pneumonia patients were collected(segmented dataset),and chest CT data of 984 patients were screened from the COVID 19-CT dataset(10 cases were randomly selected as whole test dataset,the remaining 974 cases were selected as layer selection dataset).T7—T8 layer was classified based on convolutional neural network(CNN)derived networks,including ResNet,ResNeXt,MobileNet,ShuffleNet,DenseNet,EfficientNet and ConvNeXt,then the accuracy,precision,recall and specificity were used to evaluate the performance of layer selection dataset.The skeletal muscle(SM),subcutaneous adipose tissue(SAT),intermuscular adipose tissue(IMAT)and visceral adipose tissue(VAT)were segmented using classical fully CNN(FCN)derived network,including FCN,SegNet,UNet,Attention UNet,UNET++,nnUNet,UNeXt and CMUNeXt,then Dice similarity coefficient(DSC),intersection over union(IoU)and 95 Hausdorff distance(HD)were used to evaluate the performance of segmented dataset.The automatic body composition analysis system was constructed based on optimal layer selection network and segmentation network,the mean absolute error(MAE),root mean squared error(RMSE)and standard deviation(SD)of MAE were used to evaluate the performance of automatic system for testing the whole test dataset.Results The accuracy,precision,recall and specificity of DenseNet network for automatically classifying T7—T8 layer from chest CT images was 95.06%,84.83%,92.27%and 95.78%,respectively,which were all higher than those of the other layer selection networks.In segmentation of SM,SAT,IMAT and overall,DSC and IoU of UNet++network were all higher,while 95HD of UNet++network were all lower than those of the other segmentation networks.Using DenseNet as the layer selection network and UNet++as the segmentation network,MAE of the automatic body composition analysis system for predicting SM,SAT,IMAT,VAT and MAE was 27.09,6.95,6.65 and 3.35 cm 2,respectively.Conclusion The body composition analysis system based on chest CT could be used to assess content of chest muscle and adipose.Among them,the UNet++network had better segmentation performance in adipose tissue than SM. 展开更多
关键词 body composition THORAX muscle skeletal adipose tissue deep learning tomography X-ray computed
下载PDF
Single Tooth Segmentation on Panoramic X-Rays Using End-to-End Deep Neural Networks
15
作者 Yu Sun Jing Feng +5 位作者 Huang Du Juan Liu Baochuan Pang Cheng Li Jinxian Li Dehua Cao 《Open Journal of Stomatology》 2024年第6期316-326,共11页
In dentistry, panoramic X-ray images are extensively used by dentists for tooth structure analysis and disease diagnosis. However, the manual analysis of these images is time-consuming and prone to misdiagnosis or ove... In dentistry, panoramic X-ray images are extensively used by dentists for tooth structure analysis and disease diagnosis. However, the manual analysis of these images is time-consuming and prone to misdiagnosis or overlooked. While deep learning techniques have been employed to segment teeth in panoramic X-ray images, accurate segmentation of individual teeth remains an underexplored area. In this study, we propose an end-to-end deep learning method that effectively addresses this challenge by employing an improved combinatorial loss function to separate the boundaries of adjacent teeth, enabling precise segmentation of individual teeth in panoramic X-ray images. We validate the feasibility of our approach using a challenging dataset. By training our segmentation network on 115 panoramic X-ray images, we achieve an intersection over union (IoU) of 86.56% for tooth segmentation and an accuracy of 65.52% in tooth counting on 87 test set images. Experimental results demonstrate the significant improvement of our proposed method in single tooth segmentation compared to existing methods. 展开更多
关键词 Single Tooth Segmentation Teeth Counting Panoramic X-Ray Combinatorial Loss
下载PDF
Impact of Optimizing Emergency Nursing Processes on Resuscitation Success in Patients with Acute Chest Pain
16
作者 Xiaohan Chen 《Journal of Clinical and Nursing Research》 2024年第5期150-155,共6页
Objective:To analyze the effect of optimizing the emergency nursing process in the resuscitation of patients with acute chest pain and the impact on the resuscitation success rate.Methods:66 patients with acute chest ... Objective:To analyze the effect of optimizing the emergency nursing process in the resuscitation of patients with acute chest pain and the impact on the resuscitation success rate.Methods:66 patients with acute chest pain received by the emergency department of our hospital from January 2022 to December 2023 were selected as the study subjects and divided into two groups according to the differences in the emergency nursing process,i.e.,33 patients receiving routine emergency care were included in the control group,and 33 patients receiving the optimization of emergency nursing process intervention were included in the observation group.Patients’resuscitation effect and satisfaction with nursing care in the two groups were compared.Results:The observation group’s consultation assessment time,reception time,admission to the start of resuscitation time,and resuscitation time were shorter than that of the control group,the resuscitation success rate was higher than that of the control group,and the incidence of adverse events was lower than that of the control group,with statistically significant differences(P<0.05);and the observation group’s satisfaction with nursing care was higher than that of the control group,with statistically significant differences(P<0.05).Conclusion:Optimization of emergency nursing process intervention in the resuscitation of acute chest pain patients can greatly shorten the rescue time and improve the success rate of resuscitation,with higher patient satisfaction. 展开更多
关键词 chest pain Emergency resuscitation Optimization of emergency nursing process
下载PDF
Application Value of NLR,PLR,LMR,HEART score,and POCT in Early Warning and Accurate Graded Diagnosis of High-Risk Chest Pain in Emergency Medicine
17
作者 Shaochang Ma Chunhua Lin +2 位作者 Yanmei Li Yan Chen Guohui Zhang 《Journal of Clinical and Nursing Research》 2024年第4期93-98,共6页
Objective: To evaluate the application value of neutrophils/lymphocytes (NLR), platelets/lymphocytes (PLR), lymphocytes/monocytes (LMR), HEART (history, electrocardiogram, age, risk factors, and troponin) score, and p... Objective: To evaluate the application value of neutrophils/lymphocytes (NLR), platelets/lymphocytes (PLR), lymphocytes/monocytes (LMR), HEART (history, electrocardiogram, age, risk factors, and troponin) score, and point-of- care testing (POCT) in the early warning and precise diagnosis of high-risk chest pain in emergency medicine. Methods: A total of 157 patients with acute chest pain who were admitted to the emergency department and chest pain treatment unit of our hospital between August 2022 and September 2023 were selected. Rapid testing of bedside myocardial markers (ultrasensitive troponin (hs-cTnI), myoglobin (MYO), creatine kinase isoenzyme (CK-MB), D-dimer (D-Dimer), and N-terminal B-type natriuretic peptide precursor (NT-proBNP)) was performed on the patients using a POCT device (ThermoKing BioMQ60proB). A HEART score was used to classify the patients into low (n = 53), intermediate (n = 59), and high-risk (n = 45) groups, and the NLR, PLR, and LMR were calculated. The NLR, PLR, and LMR values were compared among the three groups of patients, and the optimal cutoff values as well as sensitivity and specificity were determined based on receiver operating characteristic (ROC) analysis. Results: The HEART scores of patients in the low-risk, intermediate-risk, and high-risk groups were (2.72 ± 0.24), (4.75 ± 0.56), and (5.32 ± 0.73) respectively, and the differences were statistically significant (P < 0.05). Compared with the low-risk group, the intermediate-risk group and high-risk group had a significantly higher NLR and PLR, and a significantly lower LMR;the high-risk group had higher NLR and PLR and lower values of LMR as compared to the other two groups, and the difference was statistically significant (P < 0.05). The ROC curves suggested that the area under the curve, sensitivity, and specificity of the combined diagnosis of NLR, PLR, LMR, HEART score, and POCT were greater than those of LR, PLR, and LMR with HEART score and POCT alone. Conclusion: The combined application of NLR, PLR, LMR, HEART score, and POCT has significant application value in the early warning and precise diagnosis of emergency high-risk chest pain. It provides a more simple, easy-to-access, and efficient assessment index for the clinical prediction and treatment of emergency high- risk chest pain. 展开更多
关键词 NLR PLR LMR POCT myocardial markers HEART score Emergency high-risk chest pain
下载PDF
Optimal Synergic Deep Learning for COVID-19 Classification Using Chest X-Ray Images
18
作者 JoséEscorcia-Gutierrez Margarita Gamarra +3 位作者 Roosvel Soto-Diaz Safa Alsafari Ayman Yafoz Romany F.Mansour 《Computers, Materials & Continua》 SCIE EI 2023年第6期5255-5270,共16页
A chest radiology scan can significantly aid the early diagnosis and management of COVID-19 since the virus attacks the lungs.Chest X-ray(CXR)gained much interest after the COVID-19 outbreak thanks to its rapid imagin... A chest radiology scan can significantly aid the early diagnosis and management of COVID-19 since the virus attacks the lungs.Chest X-ray(CXR)gained much interest after the COVID-19 outbreak thanks to its rapid imaging time,widespread availability,low cost,and portability.In radiological investigations,computer-aided diagnostic tools are implemented to reduce intra-and inter-observer variability.Using lately industrialized Artificial Intelligence(AI)algorithms and radiological techniques to diagnose and classify disease is advantageous.The current study develops an automatic identification and classification model for CXR pictures using Gaussian Fil-tering based Optimized Synergic Deep Learning using Remora Optimization Algorithm(GF-OSDL-ROA).This method is inclusive of preprocessing and classification based on optimization.The data is preprocessed using Gaussian filtering(GF)to remove any extraneous noise from the image’s edges.Then,the OSDL model is applied to classify the CXRs under different severity levels based on CXR data.The learning rate of OSDL is optimized with the help of ROA for COVID-19 diagnosis showing the novelty of the work.OSDL model,applied in this study,was validated using the COVID-19 dataset.The experiments were conducted upon the proposed OSDL model,which achieved a classification accuracy of 99.83%,while the current Convolutional Neural Network achieved less classification accuracy,i.e.,98.14%. 展开更多
关键词 Artificial intelligence chest X-ray COVID-19 optimized synergic deep learning PREPROCESSING public health
下载PDF
Chest Radiographs Based Pneumothorax Detection Using Federated Learning
19
作者 Ahmad Almadhor Arfat Ahmad Khan +4 位作者 Chitapong Wechtaisong Iqra Yousaf Natalia Kryvinska Usman Tariq Haithem Ben Chikha 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1775-1791,共17页
Pneumothorax is a thoracic condition that occurs when a person’s lungs collapse,causing air to enter the pleural cavity,the area close to the lungs and chest wall.The most persistent disease,as well as one that neces... Pneumothorax is a thoracic condition that occurs when a person’s lungs collapse,causing air to enter the pleural cavity,the area close to the lungs and chest wall.The most persistent disease,as well as one that necessitates particular patient care and the privacy of their health records.The radiologists find it challenging to diagnose pneumothorax due to the variations in images.Deep learning-based techniques are commonly employed to solve image categorization and segmentation problems.However,it is challenging to employ it in the medical field due to privacy issues and a lack of data.To address this issue,a federated learning framework based on an Xception neural network model is proposed in this research.The pneumothorax medical image dataset is obtained from the Kaggle repository.Data preprocessing is performed on the used dataset to convert unstructured data into structured information to improve the model’s performance.Min-max normalization technique is used to normalize the data,and the features are extracted from chest Xray images.Then dataset converts into two windows to make two clients for local model training.Xception neural network model is trained on the dataset individually and aggregates model updates from two clients on the server side.To decrease the over-fitting effect,every client analyses the results three times.Client 1 performed better in round 2 with a 79.0%accuracy,and client 2 performed better in round 2 with a 77.0%accuracy.The experimental result shows the effectiveness of the federated learning-based technique on a deep neural network,reaching a 79.28%accuracy while also providing privacy to the patient’s data. 展开更多
关键词 Privacy preserving pneumothorax disease federated learning chest x-ray images healthcare machine learning deep learning
下载PDF
Residual Feature Attentional Fusion Network for Lightweight Chest CT Image Super-Resolution 被引量:1
20
作者 Kun Yang Lei Zhao +4 位作者 Xianghui Wang Mingyang Zhang Linyan Xue Shuang Liu Kun Liu 《Computers, Materials & Continua》 SCIE EI 2023年第6期5159-5176,共18页
The diagnosis of COVID-19 requires chest computed tomography(CT).High-resolution CT images can provide more diagnostic information to help doctors better diagnose the disease,so it is of clinical importance to study s... The diagnosis of COVID-19 requires chest computed tomography(CT).High-resolution CT images can provide more diagnostic information to help doctors better diagnose the disease,so it is of clinical importance to study super-resolution(SR)algorithms applied to CT images to improve the reso-lution of CT images.However,most of the existing SR algorithms are studied based on natural images,which are not suitable for medical images;and most of these algorithms improve the reconstruction quality by increasing the network depth,which is not suitable for machines with limited resources.To alleviate these issues,we propose a residual feature attentional fusion network for lightweight chest CT image super-resolution(RFAFN).Specifically,we design a contextual feature extraction block(CFEB)that can extract CT image features more efficiently and accurately than ordinary residual blocks.In addition,we propose a feature-weighted cascading strategy(FWCS)based on attentional feature fusion blocks(AFFB)to utilize the high-frequency detail information extracted by CFEB as much as possible via selectively fusing adjacent level feature information.Finally,we suggest a global hierarchical feature fusion strategy(GHFFS),which can utilize the hierarchical features more effectively than dense concatenation by progressively aggregating the feature information at various levels.Numerous experiments show that our method performs better than most of the state-of-the-art(SOTA)methods on the COVID-19 chest CT dataset.In detail,the peak signal-to-noise ratio(PSNR)is 0.11 dB and 0.47 dB higher on CTtest1 and CTtest2 at×3 SR compared to the suboptimal method,but the number of parameters and multi-adds are reduced by 22K and 0.43G,respectively.Our method can better recover chest CT image quality with fewer computational resources and effectively assist in COVID-19. 展开更多
关键词 SUPER-RESOLUTION COVID-19 chest CT lightweight network contextual feature extraction attentional feature fusion
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部