This paper proposes a modified golden jackal optimization(IGJO)algorithm to solve the OCL(which stands for optimal cooling load)problem to minimize energy consumption.In this algorithm,many tools have been developed,s...This paper proposes a modified golden jackal optimization(IGJO)algorithm to solve the OCL(which stands for optimal cooling load)problem to minimize energy consumption.In this algorithm,many tools have been developed,such as numerical visualization,local field method,competitive selectionmethod,and iterative strategy.The IGJO algorithm is used to improve the research capabilities of the algorithm in terms of global tuning and rotation speed.In order to fully utilize the effectiveness of the proposed algorithm,three famous examples of OCL problems in basic ventilation systems were studied and compared with some previously published works.The results show that the IGJO algorithm can find solutions equal to or better than other methods.Underpinning these studies is the need to reduce energy consumption in air conditioning systems,which is a critical business and environmental decision.The Optimal Chiller Load(OCL)problem is well-known in the industry.It is the best method of operation for the refrigeration plant to satisfy the requirement of cooling.In order to solve the OCL problem,an improved Golden Jackal optimization algorithm(IGJO)was proposed.The IGJO algorithm consists of a number of parts to improve the global optimization and rotation speed.These studies are intended to address more effectively the issue of OCL,which results in energy savings in air-conditioning systems.The performance of the proposed IGJO algorithm is evaluated,and the results are compared with the results of three known OCL problems in the ventilation system.The results indicate that the IGJO method has the same or better optimization ability as other methods and can improve the energy efficiency of the system’s cold air.展开更多
China's energy consumption in the first three quarters grew at a faster pace as use of renewable energy posted steady momentum, official data showed Tuesday. Coal used in building materials and the electric, steel an...China's energy consumption in the first three quarters grew at a faster pace as use of renewable energy posted steady momentum, official data showed Tuesday. Coal used in building materials and the electric, steel and chemical industries accounted for 85 percent of overall coal consumption during the first nine months, data released by the National Energy Administration (NEA) showed. While petroleum consumption remained steady,展开更多
Wireless sensor networks(WSNs)are made up of several sensors located in a specific area and powered by a finite amount of energy to gather environmental data.WSNs use sensor nodes(SNs)to collect and transmit data.Howe...Wireless sensor networks(WSNs)are made up of several sensors located in a specific area and powered by a finite amount of energy to gather environmental data.WSNs use sensor nodes(SNs)to collect and transmit data.However,the power supplied by the sensor network is restricted.Thus,SNs must store energy as often as to extend the lifespan of the network.In the proposed study,effective clustering and longer network lifetimes are achieved using mul-ti-swarm optimization(MSO)and game theory based on locust search(LS-II).In this research,MSO is used to improve the optimum routing,while the LS-II approach is employed to specify the number of cluster heads(CHs)and select the best ones.After the CHs are identified,the other sensor components are allo-cated to the closest CHs to them.A game theory-based energy-efficient clustering approach is applied to WSNs.Here each SN is considered a player in the game.The SN can implement beneficial methods for itself depending on the length of the idle listening time in the active phase and then determine to choose whether or not to rest.The proposed multi-swarm with energy-efficient game theory on locust search(MSGE-LS)efficiently selects CHs,minimizes energy consumption,and improves the lifetime of networks.The findings of this study indicate that the proposed MSGE-LS is an effective method because its result proves that it increases the number of clusters,average energy consumption,lifespan extension,reduction in average packet loss,and end-to-end delay.展开更多
Wireless Sensor Network(WSN)consists of a group of limited energy source sensors that are installed in a particular region to collect data from the environment.Designing the energy-efficient data collection methods in...Wireless Sensor Network(WSN)consists of a group of limited energy source sensors that are installed in a particular region to collect data from the environment.Designing the energy-efficient data collection methods in largescale wireless sensor networks is considered to be a difficult area in the research.Sensor node clustering is a popular approach for WSN.Moreover,the sensor nodes are grouped to form clusters in a cluster-based WSN environment.The battery performance of the sensor nodes is likewise constrained.As a result,the energy efficiency of WSNs is critical.In specific,the energy usage is influenced by the loads on the sensor node as well as it ranges from the Base Station(BS).Therefore,energy efficiency and load balancing are very essential in WSN.In the proposed method,a novel Grey Wolf Improved Particle Swarm Optimization with Tabu Search Techniques(GW-IPSO-TS)was used.The selection of Cluster Heads(CHs)and routing path of every CH from the base station is enhanced by the proposed method.It provides the best routing path and increases the lifetime and energy efficiency of the network.End-to-end delay and packet loss rate have also been improved.The proposed GW-IPSO-TS method enhances the evaluation of alive nodes,dead nodes,network survival index,convergence rate,and standard deviation of sensor nodes.Compared to the existing algorithms,the proposed method outperforms better and improves the lifetime of the network.展开更多
Purpose–Under the dual pressure of resources and environment,many countries have focused on the role of railways in promoting low-carbon development of integrated transportation and of even the whole society.This pap...Purpose–Under the dual pressure of resources and environment,many countries have focused on the role of railways in promoting low-carbon development of integrated transportation and of even the whole society.This paper aims to provide a comprehensive study on methods to improve railway energy efficiency in other national railways and achievements made by China’s railways in the past practice,and then to propose ways in which in the future China’s railways could rationally select the path of improving energy efficiency regarding the needs of the nation’s ever-shifting development and carry out the re-engineering for mechanism innovation in energy conservation and emission reduction process.Design/methodology/approach–This paper first studies other national railways that have tried to promote the improvement of railway energy efficiency by the ways of technology,management and structural reconstruction to reduce energy consumption and carbon emissions.Among them,the effect of structural energy conservation and emission reduction has become more prominent.It has become the main energy conservation and emission reduction measure adopted by foreign railway sectors.The practice of energy conservation and emission reduction of railways in various countries has tended to shift from a technical level to a structural one.Findings–Key aspects in improving energy efficiency include re-optimization of energy structure,reinnovation of energy-saving technologies and optimization of transportation organization.Path selection includes continuing to promote electrified railway construction,increasing the use of new and renewable energy sources,and promoting the reform of railway transportation organizations.Originality/value–This paper provides further challenges and research directions in the proposed area and has referential value for the methodologies,approaches for practice in a Chinese context.To achieve the expected goals,relevant supporting policies and measures need to be formulated,including actively guiding integrated transportation toward railway-oriented development,promoting innovation in energy-saving and emission reduction mechanisms and strengthening policy incentives,focusing on improving the energy efficiency of railways through market behavior.At the same time,it is necessary to pay attention to new phenomena in the railway industry for track and analysis.展开更多
高速公路建设项目能源消耗大,利用信息技术对高速公路建设期能源消耗进行统计分析,有助于进行工程统筹安排,提高效率,实现节能减排目的。以河南三淅高速公路为例,采用B/S三层结构设计高速公路能耗统计分析系统,并采用JAVA开发语言,通过J...高速公路建设项目能源消耗大,利用信息技术对高速公路建设期能源消耗进行统计分析,有助于进行工程统筹安排,提高效率,实现节能减排目的。以河南三淅高速公路为例,采用B/S三层结构设计高速公路能耗统计分析系统,并采用JAVA开发语言,通过Java Server Pages网页技术进行实现。系统能满足高速公路建设、监理、施工单位不同用户要求,实现能耗数据录入、编辑、审核、统计、分析、任务提醒、日志管理等功能,及时准确地反映建设项目能源消耗状况,对合理安排工期、增加投资收益、控制污染排放发挥重要作用。展开更多
文摘This paper proposes a modified golden jackal optimization(IGJO)algorithm to solve the OCL(which stands for optimal cooling load)problem to minimize energy consumption.In this algorithm,many tools have been developed,such as numerical visualization,local field method,competitive selectionmethod,and iterative strategy.The IGJO algorithm is used to improve the research capabilities of the algorithm in terms of global tuning and rotation speed.In order to fully utilize the effectiveness of the proposed algorithm,three famous examples of OCL problems in basic ventilation systems were studied and compared with some previously published works.The results show that the IGJO algorithm can find solutions equal to or better than other methods.Underpinning these studies is the need to reduce energy consumption in air conditioning systems,which is a critical business and environmental decision.The Optimal Chiller Load(OCL)problem is well-known in the industry.It is the best method of operation for the refrigeration plant to satisfy the requirement of cooling.In order to solve the OCL problem,an improved Golden Jackal optimization algorithm(IGJO)was proposed.The IGJO algorithm consists of a number of parts to improve the global optimization and rotation speed.These studies are intended to address more effectively the issue of OCL,which results in energy savings in air-conditioning systems.The performance of the proposed IGJO algorithm is evaluated,and the results are compared with the results of three known OCL problems in the ventilation system.The results indicate that the IGJO method has the same or better optimization ability as other methods and can improve the energy efficiency of the system’s cold air.
文摘China's energy consumption in the first three quarters grew at a faster pace as use of renewable energy posted steady momentum, official data showed Tuesday. Coal used in building materials and the electric, steel and chemical industries accounted for 85 percent of overall coal consumption during the first nine months, data released by the National Energy Administration (NEA) showed. While petroleum consumption remained steady,
基金This work was suppoted by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)the Soonchunhyang University Research Fund.
文摘Wireless sensor networks(WSNs)are made up of several sensors located in a specific area and powered by a finite amount of energy to gather environmental data.WSNs use sensor nodes(SNs)to collect and transmit data.However,the power supplied by the sensor network is restricted.Thus,SNs must store energy as often as to extend the lifespan of the network.In the proposed study,effective clustering and longer network lifetimes are achieved using mul-ti-swarm optimization(MSO)and game theory based on locust search(LS-II).In this research,MSO is used to improve the optimum routing,while the LS-II approach is employed to specify the number of cluster heads(CHs)and select the best ones.After the CHs are identified,the other sensor components are allo-cated to the closest CHs to them.A game theory-based energy-efficient clustering approach is applied to WSNs.Here each SN is considered a player in the game.The SN can implement beneficial methods for itself depending on the length of the idle listening time in the active phase and then determine to choose whether or not to rest.The proposed multi-swarm with energy-efficient game theory on locust search(MSGE-LS)efficiently selects CHs,minimizes energy consumption,and improves the lifetime of networks.The findings of this study indicate that the proposed MSGE-LS is an effective method because its result proves that it increases the number of clusters,average energy consumption,lifespan extension,reduction in average packet loss,and end-to-end delay.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Larg Groups project Under Grant Number(71/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R238)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR20.
文摘Wireless Sensor Network(WSN)consists of a group of limited energy source sensors that are installed in a particular region to collect data from the environment.Designing the energy-efficient data collection methods in largescale wireless sensor networks is considered to be a difficult area in the research.Sensor node clustering is a popular approach for WSN.Moreover,the sensor nodes are grouped to form clusters in a cluster-based WSN environment.The battery performance of the sensor nodes is likewise constrained.As a result,the energy efficiency of WSNs is critical.In specific,the energy usage is influenced by the loads on the sensor node as well as it ranges from the Base Station(BS).Therefore,energy efficiency and load balancing are very essential in WSN.In the proposed method,a novel Grey Wolf Improved Particle Swarm Optimization with Tabu Search Techniques(GW-IPSO-TS)was used.The selection of Cluster Heads(CHs)and routing path of every CH from the base station is enhanced by the proposed method.It provides the best routing path and increases the lifetime and energy efficiency of the network.End-to-end delay and packet loss rate have also been improved.The proposed GW-IPSO-TS method enhances the evaluation of alive nodes,dead nodes,network survival index,convergence rate,and standard deviation of sensor nodes.Compared to the existing algorithms,the proposed method outperforms better and improves the lifetime of the network.
文摘Purpose–Under the dual pressure of resources and environment,many countries have focused on the role of railways in promoting low-carbon development of integrated transportation and of even the whole society.This paper aims to provide a comprehensive study on methods to improve railway energy efficiency in other national railways and achievements made by China’s railways in the past practice,and then to propose ways in which in the future China’s railways could rationally select the path of improving energy efficiency regarding the needs of the nation’s ever-shifting development and carry out the re-engineering for mechanism innovation in energy conservation and emission reduction process.Design/methodology/approach–This paper first studies other national railways that have tried to promote the improvement of railway energy efficiency by the ways of technology,management and structural reconstruction to reduce energy consumption and carbon emissions.Among them,the effect of structural energy conservation and emission reduction has become more prominent.It has become the main energy conservation and emission reduction measure adopted by foreign railway sectors.The practice of energy conservation and emission reduction of railways in various countries has tended to shift from a technical level to a structural one.Findings–Key aspects in improving energy efficiency include re-optimization of energy structure,reinnovation of energy-saving technologies and optimization of transportation organization.Path selection includes continuing to promote electrified railway construction,increasing the use of new and renewable energy sources,and promoting the reform of railway transportation organizations.Originality/value–This paper provides further challenges and research directions in the proposed area and has referential value for the methodologies,approaches for practice in a Chinese context.To achieve the expected goals,relevant supporting policies and measures need to be formulated,including actively guiding integrated transportation toward railway-oriented development,promoting innovation in energy-saving and emission reduction mechanisms and strengthening policy incentives,focusing on improving the energy efficiency of railways through market behavior.At the same time,it is necessary to pay attention to new phenomena in the railway industry for track and analysis.
文摘高速公路建设项目能源消耗大,利用信息技术对高速公路建设期能源消耗进行统计分析,有助于进行工程统筹安排,提高效率,实现节能减排目的。以河南三淅高速公路为例,采用B/S三层结构设计高速公路能耗统计分析系统,并采用JAVA开发语言,通过Java Server Pages网页技术进行实现。系统能满足高速公路建设、监理、施工单位不同用户要求,实现能耗数据录入、编辑、审核、统计、分析、任务提醒、日志管理等功能,及时准确地反映建设项目能源消耗状况,对合理安排工期、增加投资收益、控制污染排放发挥重要作用。