The nonlinear refractive index and absorption coefficient of single\|shell semiconductor carbon nanotubes(CN s ) are calculated based on the two\|band approximation and Genkin\|Mednis approach. The results of nonlin...The nonlinear refractive index and absorption coefficient of single\|shell semiconductor carbon nanotubes(CN s ) are calculated based on the two\|band approximation and Genkin\|Mednis approach. The results of nonlinear refractive index and absorption coefficient reach the order of 10 -8 and 10 -4 cm 2\5W -1 separately, which indicates that CN s have wonderful nonlinear optical properties. Taking into account the temperature effect and overlapping of σ and π orbits, the effect of relaxation term and chiral angle is discussed. The results show that the smaller the relaxation term, the larger the nonlinear absorption coefficient and refractive index. At the same time, CN s with different chiral angles have different results due to their different energy gap.展开更多
Cuticles of some Chrysina scarabs are characterized by flat, graded, and twisted structures of nanosized chitin fibrils. As inferred from SEM images, each species has its own spatial period or pitch P which is depende...Cuticles of some Chrysina scarabs are characterized by flat, graded, and twisted structures of nanosized chitin fibrils. As inferred from SEM images, each species has its own spatial period or pitch P which is dependent on the depth z through the cuticle. From Berreman’s formalism, taking into account the corresponding P(z) dependence, we evaluate reflection spectra of C. aurigans and C. chrysargyrea scarabs. The spectra display the main spectral features observed in the measured ones when small sections of the cuticles are illuminated with non-polarized light, for wavelengths between 300 and 1100 nm. By considering these twisted structures as 1D photonic crystals, an approach is developed to show how the broad band characterizing the reflection spectra arises from a narrow intrinsic photonic band width, whose spectral position moves through visible and near infrared wavelengths. The role of the epicuticle that covers the twisted structures is analyzed in terms of a waxy layer acting as an anti-reflecting coating that also shows low levels of light scattering.展开更多
Research on light scattering from a large chiral sphere shows that the rainbow phenomenon is different from that of an isotropic sphere. A chiral sphere with certain chirality generates three first-order rainbows. In ...Research on light scattering from a large chiral sphere shows that the rainbow phenomenon is different from that of an isotropic sphere. A chiral sphere with certain chirality generates three first-order rainbows. In this Letter,we present a geometric optics interpretation for the phenomenon and make a calculation of the rainbow angles.The ray traces inside the sphere are determined by the reflection and refraction laws of light at the achiral–chiral interface and the chiral–achiral interface. The calculated rainbow angles achieve good agreements with those obtained by the analytical solutions. The effects of chirality and the refractive index of the sphere on rainbow angles are analyzed.展开更多
文摘The nonlinear refractive index and absorption coefficient of single\|shell semiconductor carbon nanotubes(CN s ) are calculated based on the two\|band approximation and Genkin\|Mednis approach. The results of nonlinear refractive index and absorption coefficient reach the order of 10 -8 and 10 -4 cm 2\5W -1 separately, which indicates that CN s have wonderful nonlinear optical properties. Taking into account the temperature effect and overlapping of σ and π orbits, the effect of relaxation term and chiral angle is discussed. The results show that the smaller the relaxation term, the larger the nonlinear absorption coefficient and refractive index. At the same time, CN s with different chiral angles have different results due to their different energy gap.
文摘Cuticles of some Chrysina scarabs are characterized by flat, graded, and twisted structures of nanosized chitin fibrils. As inferred from SEM images, each species has its own spatial period or pitch P which is dependent on the depth z through the cuticle. From Berreman’s formalism, taking into account the corresponding P(z) dependence, we evaluate reflection spectra of C. aurigans and C. chrysargyrea scarabs. The spectra display the main spectral features observed in the measured ones when small sections of the cuticles are illuminated with non-polarized light, for wavelengths between 300 and 1100 nm. By considering these twisted structures as 1D photonic crystals, an approach is developed to show how the broad band characterizing the reflection spectra arises from a narrow intrinsic photonic band width, whose spectral position moves through visible and near infrared wavelengths. The role of the epicuticle that covers the twisted structures is analyzed in terms of a waxy layer acting as an anti-reflecting coating that also shows low levels of light scattering.
基金supported by the National Natural Science Foundation of China(Nos.61172031,61308025,61475123,and 61571355)the Fundamental Research Funds for the Central Universities
文摘Research on light scattering from a large chiral sphere shows that the rainbow phenomenon is different from that of an isotropic sphere. A chiral sphere with certain chirality generates three first-order rainbows. In this Letter,we present a geometric optics interpretation for the phenomenon and make a calculation of the rainbow angles.The ray traces inside the sphere are determined by the reflection and refraction laws of light at the achiral–chiral interface and the chiral–achiral interface. The calculated rainbow angles achieve good agreements with those obtained by the analytical solutions. The effects of chirality and the refractive index of the sphere on rainbow angles are analyzed.