Four new chiral 1,2,3,4-tetrahydroisoquinoline-derived β-amino alcohols were synthesized from L-DOPA in good yields. The structures of the target compounds were confirmed by ^1H NMR, ^13C NMR and MS.
A new chiral cyclic β-amino alcohol (R)- 1 -(l '-amino-2'-naphthylethyl)-cyclopentanol2, which had notbeen reported previously, was prepared from (R) - 3 - (2 - naphthy1 )- alanine 3.
A series of optically active N-protected 1,2-amino alcohols were synthesized via the reduction of the corresponding a-aminoketones starting from the readily available L-amino acids.
Four new chiral 1,2,3,4-tetrahydroisoquinoline-derived G-amino alcohols were synthesized from commercially available LDOPA. These ligands were evaluated in the asymmetric addition of diethylzinc to benzaldehydes and s...Four new chiral 1,2,3,4-tetrahydroisoquinoline-derived G-amino alcohols were synthesized from commercially available LDOPA. These ligands were evaluated in the asymmetric addition of diethylzinc to benzaldehydes and showed different catalytic activities (up to 86% ee). The solvent played an important role in the enantioselective process. The transition state models were proposed to explain the reversion of the product configuration.展开更多
Chiral aromatic alcohols are the key chiral building block for many important enantiopure pharmaceu-ticals. In this work,we studied asymmetric reduction of prochiral aromatic ketone to produce the corresponding chiral...Chiral aromatic alcohols are the key chiral building block for many important enantiopure pharmaceu-ticals. In this work,we studied asymmetric reduction of prochiral aromatic ketone to produce the corresponding chiral alcohol using vegetables as the biocatalyst. Acetophenone was chosen as the model substrate. The results in-dicate that acetophenone can be reduced to the corresponding chiral alcohols with high enantioselectivity by the chosen vegetables,i.e. apple(Malus pumila),carrot(Daucus carota),cucumber(Cucumis sativus),onion(Allium cepa),potato(Soanum tuberosum),radish(Raphanus sativus),and sweet potato(Ipomoea batatas) . In the reaction,R-1-phenylethanol is produced with apple,sweet potato and potato as the catalyst,while S-1-phenylethanol is the product with the other vegetables as the catalyst. In term of the enantioselectivity and reaction yield,carrot(D. ca-rota) is the best catalyst for this reaction. Furthermore,the reaction characteristics were studied in detail using car-rot(D. carota) as the biocatalyst. The effects of various factors on the reaction were investigated and the optimal reaction conditions were determined. Under the optimal reaction conditions(reaction time 50 h,substrate concen-tration 20 mmol·L-1,reaction temperature 35 °C and pH 7),95% of e.e.(to S-1-phenylethanol) and 85% chemical yield can be obtained. This work extends the biocatalyst for the asymmetric reduction reaction of prochiral aromatic ketones,and provides a novel potential route to produce enantiopure aromatic alcohols.展开更多
The nucleophilic ring opening of epoxides with amines is a well known route for the synthesis of β-amino alcohols. The use of carbonates offers significant advantages over epoxides as they are far less hazardous mate...The nucleophilic ring opening of epoxides with amines is a well known route for the synthesis of β-amino alcohols. The use of carbonates offers significant advantages over epoxides as they are far less hazardous materials, safe for handling, do not require high-pressure equipment and most notably the possibility of solvent less reactions. In this work, utilization of zeolite as host catalyst in the reaction media for synthesis of β-amino alcohols without using solvent is reported.展开更多
A chiral phosphorous derivatizing agent prepared from PCl3 and (S)-BINOL was described. It is used to determine the enantiomeric excess of chiral alcohols and amines by 31P NMR.
Reduction of prochiral ferrocenyl ketones 2a-e in the presence of 10 mol% of chiral beta -amino alcohols 4a-b provides 1-ferrocenyl alcohols 1a-e in high yields (> 85%) with high optically purity (e.e. up to 96%).
A highly effective,new chiral 1,2,3,4-tetrahydroisoquinoline catalyst 1 for the diethylzinc addition to aryl aldehydes has been investigated.Using 10 mol%of this chiral catalyst,secondary alcohols can be obtained in u...A highly effective,new chiral 1,2,3,4-tetrahydroisoquinoline catalyst 1 for the diethylzinc addition to aryl aldehydes has been investigated.Using 10 mol%of this chiral catalyst,secondary alcohols can be obtained in up to 87%yield and 99.5%ee under mild conditions.展开更多
To examine the potential ability of edible mushrooms to act as biocatalysts, 19 basidiomycete strains were screened. Modified media (PG, O, and PGO medium) for liquid cultivation of these basidiomycete strains were de...To examine the potential ability of edible mushrooms to act as biocatalysts, 19 basidiomycete strains were screened. Modified media (PG, O, and PGO medium) for liquid cultivation of these basidiomycete strains were designed and tested. Wet cells (>10 g) of 4 basidiomycete strains (Pleurotus salmoneostramineus H7, P. salmoneostramineus H13, Ganoderma lucidum NBRC31863, Flammulina velutipes NBRC31862) were harvested from PGO medium for 7 days. The stereoselective reduction of α-keto esters using the 4 strains was tested. It was found that each of these strains had a reducing activity toward 6 aliphatic α-keto esters. In the presence of L-alanine as an additive, the reduction of ethyl 2-oxobutanoate and ethyl 2-oxopentanoete by P. salmoneostramineus H7 produced the corresponding alcohol with a high conversion ratio and with excellent enantiomeric excess (>99% e.e. (R)). Furthermore, ethyl pyruvate, ethyl 2-oxobutanoate, and ethyl 2-oxopentanoate were predominantly reduced to the corresponding (R)-hydroxy ester (>99% e.e.) by G. lucidum. Thus, we found that these edible mushrooms have great potential to be used as biocatalysts for the stereoselective reduction of carbonyl compounds.展开更多
Chiral amino acids and their corresponding amino alcohols bearing camphoric backbone were prepared from D-(+)-camphoric imide and characterized by infrared, elemental analysis, ESI-MS, and NMR measurements. Among t...Chiral amino acids and their corresponding amino alcohols bearing camphoric backbone were prepared from D-(+)-camphoric imide and characterized by infrared, elemental analysis, ESI-MS, and NMR measurements. Among them, one intermediate (1S,3R)-3-amino-2,2,3- trimethyl cyclopentane-1-carboxylic acid hydrochloride 3 was structurally elucidated by X-ray diffraction techniques. Versatile intermolecular hydrogen bonding interactions observed in its packing structure result in a two-dimensional framework.展开更多
Sterically congestedα-tertiary primary amines are ubiquitous substructures in pharmaceutical and agrochemical agents yet are challenging to access.Herein,straightforward photoredox-catalyzed access to structurally di...Sterically congestedα-tertiary primary amines are ubiquitous substructures in pharmaceutical and agrochemical agents yet are challenging to access.Herein,straightforward photoredox-catalyzed access to structurally diverseα,α,α-trisubstituted primary amines from denitrogenative alkylarylation or dialkylation of vinyl azides with N-hydroxyphthalimide(NHPI)esters and cyanoarenes or aryl aldehydes has been developed.The use of vinyl azide as a precursor to a primary aminewas enabled by the dual role of the Hantzsch ester to form an electron donor-acceptor complex and serve as a sacrificial reductant.This strategy provides a modular synthesis ofα-tertiary primary amines,including unprotected 1,2-amino alcohols,from simple materials with excellent functional group tolerance.The synthetic applicability of this method was demonstrated by streamlined access to 2,2-disubstituted tetrahydroquinolines.Preliminary investigations support two parallel reductive photocatalytic cycles allowing for the denitrogenative alkylarylation or dialkylation of vinyl azides via decarboxylative radical addition followed by heteroradical cross-coupling betweenα-amino radicals and aryl anion radicals or ketyl anion radicals.展开更多
Engineering the surface microenvironment by tuning the binary interactions between a supported metal with a secondary metal oxide(MO_(x))or support has been a common method for improving the catalytic performance of s...Engineering the surface microenvironment by tuning the binary interactions between a supported metal with a secondary metal oxide(MO_(x))or support has been a common method for improving the catalytic performance of supported metal catalysts.However,few studies have investigated the ternary interactions among the metal,MO_(x),and support.Here,we report for the first time the formation of metal-MO_(x)-support interaction(MMSI)in reducible TiO_(2)-supported PtReO_(x) catalysts,affording 87% yield and 100% ee in the tandem hydrogenation of an aqueous chiral cyclohexane-1,2-dicarboxylic acid into the corresponding diol;the catalytic activity is eight times higher than that obtained with non-reducible support counterparts in the same reaction via traditional batch synthesis with multiple steps and unfriendly reagents.Detailed experimental and computational studies suggest that the TiO_(2) crystalline phase-dependent density of the oxygen vacancies induces different Pt-ReO_(x)-TiO_(2) interactions,which dominate the electron transfer therein and tune the adsorption strength of the carbonyl moiety of the substrate/intermediate,thus promoting the hydrogenation activity and selectivity.In addition,the strong MMSI endows the optimal rutile TiO_(2) supported PtReO_(x) catalyst with an outstanding lifetime of 400 h in a fixed-bed reactor under acidic aqueous conditions and ensures efficient applications in the selective hydrogenation of aliphatic dicarboxylic acids and functional carboxylic acids.This work provides a promising strategy for the development of efficient and stable supported catalysts for the selective hydrogenation of diverse C-O and C=O bonds.展开更多
A complete study of the asymmetric addition of phenylacetylene to ketones catalyzed by Schiff-base amino alcohol-Zn complex is reported in this article. The Schiff-base amino alcohols were easily prepared from amino a...A complete study of the asymmetric addition of phenylacetylene to ketones catalyzed by Schiff-base amino alcohol-Zn complex is reported in this article. The Schiff-base amino alcohols were easily prepared from amino acids in three steps. When the amount of ligand was 1%(molar fraction), an e.e. value up to 94% was obtained. A series of practical chiral ligands were applied in the enantioselective addition of phenylacetylene to ketones without adding another stronger Lewis acid except zinc.展开更多
A series of chiral secondary alcohols were easily prepared by means of asymmetric hydrogenation of prochiral aromatic ketones using a new((Rax)-BuP)/(R,R)-DPEN-Ru(Ⅱ) complex catalyst system.The hydrogenation ...A series of chiral secondary alcohols were easily prepared by means of asymmetric hydrogenation of prochiral aromatic ketones using a new((Rax)-BuP)/(R,R)-DPEN-Ru(Ⅱ) complex catalyst system.The hydrogenation of 2-methylacetophenone in n-butanol (t-BuOK/Ru =45.6/1,S/C = 500,20 atm.of H2,20℃,48 h) afforded(S)-1-(2'-methylphenyl)ethanol in 92%ee and〉99% conversion.展开更多
Enantiomers of four amino alcohols were resolved by ion-pair chromatography with (+)-10-camphorsulphonic acid as chiral counter ion. Studies of the influence of the mobile phase composition, the solute structure and t...Enantiomers of four amino alcohols were resolved by ion-pair chromatography with (+)-10-camphorsulphonic acid as chiral counter ion. Studies of the influence of the mobile phase composition, the solute structure and the mobile phase flow-rate on separation are presented. Under the optimized conditions enantiomeric propanolol, norephedrine, metropolol and salbutamol were separated using dichloromethane-1-pentanol (97:3 v/v) as mobile phase on Lichrospher-100-DIOL column.展开更多
We screened 15 Agromyces strains from the Microbacteriaceae family and 16 Gordonia strains from the Gordoniaceae family to investigate their biocatalytic ability to reduce carbonyl compounds. Two Agromyces strains (A....We screened 15 Agromyces strains from the Microbacteriaceae family and 16 Gordonia strains from the Gordoniaceae family to investigate their biocatalytic ability to reduce carbonyl compounds. Two Agromyces strains (A. soli NBRC109063 and A. humatus NBRC109085) and two Gordonia strains (G. hydrophobica NBRC16057 and G. malaquae NBRC108250) grew well in 230 medium. The stereoselective reduction of various carbonyl compounds using these four strains was investigated. We discovered that these strains can reduce aliphatic and aromatic α-keto esters and an aromatic α-keto amide. On the basis of the conversion rate and stereoselectivity of the alcohols produced, G. hydrophobica NBRC16057 is a potential biocatalyst for the stereoselective reduction of α-keto esters and an aromatic α-keto amide to the corresponding chiral alcohols. Our results also suggest that the reduction of ethyl 2-methylacetoacetate by wet G. hydrophobica NBRC16057 cells in the presence of L-glutamate is useful for the production of chiral ethyl 3-hydroxy-2-methylbutanoate.展开更多
Four binol based pyrrole carboxamide chiral receptors has been synthesized and effectively used as a Chirality Conversion Reagent (CCR) for underivatized amino acids. Three points of interactions take place for the co...Four binol based pyrrole carboxamide chiral receptors has been synthesized and effectively used as a Chirality Conversion Reagent (CCR) for underivatized amino acids. Three points of interactions take place for the conversion process. They are the reversible imine formation, the internal resonance assisted Hydrogen Bonding (RAHB) and the additional hydrogen bonds between the amino acids and the heterocylic moiety of the pendant groups. The conversion efficiency of all the receptors was found to be comparable with those of the receptors reported earlier.展开更多
文摘Four new chiral 1,2,3,4-tetrahydroisoquinoline-derived β-amino alcohols were synthesized from L-DOPA in good yields. The structures of the target compounds were confirmed by ^1H NMR, ^13C NMR and MS.
基金the National Natural Science Foundation of China(No.20002002 and No.20272025)Ph.D.programs Foundation of Ministry of Education of China for generous financial support of our program.
文摘A series of optically active N-protected 1,2-amino alcohols were synthesized via the reduction of the corresponding a-aminoketones starting from the readily available L-amino acids.
文摘Four new chiral 1,2,3,4-tetrahydroisoquinoline-derived G-amino alcohols were synthesized from commercially available LDOPA. These ligands were evaluated in the asymmetric addition of diethylzinc to benzaldehydes and showed different catalytic activities (up to 86% ee). The solvent played an important role in the enantioselective process. The transition state models were proposed to explain the reversion of the product configuration.
基金Supported by the Natural Science Foundation of Hubei Province(2008CDB354) Wuhan Youth Scientist Dawn Foundation(200750731288)
文摘Chiral aromatic alcohols are the key chiral building block for many important enantiopure pharmaceu-ticals. In this work,we studied asymmetric reduction of prochiral aromatic ketone to produce the corresponding chiral alcohol using vegetables as the biocatalyst. Acetophenone was chosen as the model substrate. The results in-dicate that acetophenone can be reduced to the corresponding chiral alcohols with high enantioselectivity by the chosen vegetables,i.e. apple(Malus pumila),carrot(Daucus carota),cucumber(Cucumis sativus),onion(Allium cepa),potato(Soanum tuberosum),radish(Raphanus sativus),and sweet potato(Ipomoea batatas) . In the reaction,R-1-phenylethanol is produced with apple,sweet potato and potato as the catalyst,while S-1-phenylethanol is the product with the other vegetables as the catalyst. In term of the enantioselectivity and reaction yield,carrot(D. ca-rota) is the best catalyst for this reaction. Furthermore,the reaction characteristics were studied in detail using car-rot(D. carota) as the biocatalyst. The effects of various factors on the reaction were investigated and the optimal reaction conditions were determined. Under the optimal reaction conditions(reaction time 50 h,substrate concen-tration 20 mmol·L-1,reaction temperature 35 °C and pH 7),95% of e.e.(to S-1-phenylethanol) and 85% chemical yield can be obtained. This work extends the biocatalyst for the asymmetric reduction reaction of prochiral aromatic ketones,and provides a novel potential route to produce enantiopure aromatic alcohols.
文摘The nucleophilic ring opening of epoxides with amines is a well known route for the synthesis of β-amino alcohols. The use of carbonates offers significant advantages over epoxides as they are far less hazardous materials, safe for handling, do not require high-pressure equipment and most notably the possibility of solvent less reactions. In this work, utilization of zeolite as host catalyst in the reaction media for synthesis of β-amino alcohols without using solvent is reported.
基金We are very grateful for the financial support of the National Natural Science Foundation of China (No.29872016) and the Hong Kong Polytechnic University ASD Fund.
文摘A chiral phosphorous derivatizing agent prepared from PCl3 and (S)-BINOL was described. It is used to determine the enantiomeric excess of chiral alcohols and amines by 31P NMR.
文摘Reduction of prochiral ferrocenyl ketones 2a-e in the presence of 10 mol% of chiral beta -amino alcohols 4a-b provides 1-ferrocenyl alcohols 1a-e in high yields (> 85%) with high optically purity (e.e. up to 96%).
文摘A highly effective,new chiral 1,2,3,4-tetrahydroisoquinoline catalyst 1 for the diethylzinc addition to aryl aldehydes has been investigated.Using 10 mol%of this chiral catalyst,secondary alcohols can be obtained in up to 87%yield and 99.5%ee under mild conditions.
文摘To examine the potential ability of edible mushrooms to act as biocatalysts, 19 basidiomycete strains were screened. Modified media (PG, O, and PGO medium) for liquid cultivation of these basidiomycete strains were designed and tested. Wet cells (>10 g) of 4 basidiomycete strains (Pleurotus salmoneostramineus H7, P. salmoneostramineus H13, Ganoderma lucidum NBRC31863, Flammulina velutipes NBRC31862) were harvested from PGO medium for 7 days. The stereoselective reduction of α-keto esters using the 4 strains was tested. It was found that each of these strains had a reducing activity toward 6 aliphatic α-keto esters. In the presence of L-alanine as an additive, the reduction of ethyl 2-oxobutanoate and ethyl 2-oxopentanoete by P. salmoneostramineus H7 produced the corresponding alcohol with a high conversion ratio and with excellent enantiomeric excess (>99% e.e. (R)). Furthermore, ethyl pyruvate, ethyl 2-oxobutanoate, and ethyl 2-oxopentanoate were predominantly reduced to the corresponding (R)-hydroxy ester (>99% e.e.) by G. lucidum. Thus, we found that these edible mushrooms have great potential to be used as biocatalysts for the stereoselective reduction of carbonyl compounds.
基金This work was funded by the National Natural Science Foundation of China (No. 20301009)
文摘Chiral amino acids and their corresponding amino alcohols bearing camphoric backbone were prepared from D-(+)-camphoric imide and characterized by infrared, elemental analysis, ESI-MS, and NMR measurements. Among them, one intermediate (1S,3R)-3-amino-2,2,3- trimethyl cyclopentane-1-carboxylic acid hydrochloride 3 was structurally elucidated by X-ray diffraction techniques. Versatile intermolecular hydrogen bonding interactions observed in its packing structure result in a two-dimensional framework.
基金This research was made possible as a result of a generous grant from NSFC(grant nos.21971101 and 22171127)Guangdong Basic and Applied Basic Research Foundation(grant no.2022A1515011806)+3 种基金Department of Education of Guangdong Province(grant nos.2022JGXM054 and 2021KTSCX106)Shenzhen Science and Technology Innovation Committee(grant no.JCYJ20220519201425001)Thousand Talents Program for Young Scholars,The Pearl River Talent Recruitment Program(grant no.2019QN01Y261)Guangdong Provincial Key Laboratory of Catalysis(grant no.2020B121201002).
文摘Sterically congestedα-tertiary primary amines are ubiquitous substructures in pharmaceutical and agrochemical agents yet are challenging to access.Herein,straightforward photoredox-catalyzed access to structurally diverseα,α,α-trisubstituted primary amines from denitrogenative alkylarylation or dialkylation of vinyl azides with N-hydroxyphthalimide(NHPI)esters and cyanoarenes or aryl aldehydes has been developed.The use of vinyl azide as a precursor to a primary aminewas enabled by the dual role of the Hantzsch ester to form an electron donor-acceptor complex and serve as a sacrificial reductant.This strategy provides a modular synthesis ofα-tertiary primary amines,including unprotected 1,2-amino alcohols,from simple materials with excellent functional group tolerance.The synthetic applicability of this method was demonstrated by streamlined access to 2,2-disubstituted tetrahydroquinolines.Preliminary investigations support two parallel reductive photocatalytic cycles allowing for the denitrogenative alkylarylation or dialkylation of vinyl azides via decarboxylative radical addition followed by heteroradical cross-coupling betweenα-amino radicals and aryl anion radicals or ketyl anion radicals.
文摘Engineering the surface microenvironment by tuning the binary interactions between a supported metal with a secondary metal oxide(MO_(x))or support has been a common method for improving the catalytic performance of supported metal catalysts.However,few studies have investigated the ternary interactions among the metal,MO_(x),and support.Here,we report for the first time the formation of metal-MO_(x)-support interaction(MMSI)in reducible TiO_(2)-supported PtReO_(x) catalysts,affording 87% yield and 100% ee in the tandem hydrogenation of an aqueous chiral cyclohexane-1,2-dicarboxylic acid into the corresponding diol;the catalytic activity is eight times higher than that obtained with non-reducible support counterparts in the same reaction via traditional batch synthesis with multiple steps and unfriendly reagents.Detailed experimental and computational studies suggest that the TiO_(2) crystalline phase-dependent density of the oxygen vacancies induces different Pt-ReO_(x)-TiO_(2) interactions,which dominate the electron transfer therein and tune the adsorption strength of the carbonyl moiety of the substrate/intermediate,thus promoting the hydrogenation activity and selectivity.In addition,the strong MMSI endows the optimal rutile TiO_(2) supported PtReO_(x) catalyst with an outstanding lifetime of 400 h in a fixed-bed reactor under acidic aqueous conditions and ensures efficient applications in the selective hydrogenation of aliphatic dicarboxylic acids and functional carboxylic acids.This work provides a promising strategy for the development of efficient and stable supported catalysts for the selective hydrogenation of diverse C-O and C=O bonds.
基金the National Natural Science Foundation of China(Nos.20472026 and 20525206)Chang Jiang Scholar Program of the Ministry of Education, China.
文摘A complete study of the asymmetric addition of phenylacetylene to ketones catalyzed by Schiff-base amino alcohol-Zn complex is reported in this article. The Schiff-base amino alcohols were easily prepared from amino acids in three steps. When the amount of ligand was 1%(molar fraction), an e.e. value up to 94% was obtained. A series of practical chiral ligands were applied in the enantioselective addition of phenylacetylene to ketones without adding another stronger Lewis acid except zinc.
基金the National Natural Science Foundation of China(Nos.20343005,20473107,20673130,and 20773147)the Hong Kong PolyU Joint Supervision Scheme(A-PH78) for financial support.
文摘A series of chiral secondary alcohols were easily prepared by means of asymmetric hydrogenation of prochiral aromatic ketones using a new((Rax)-BuP)/(R,R)-DPEN-Ru(Ⅱ) complex catalyst system.The hydrogenation of 2-methylacetophenone in n-butanol (t-BuOK/Ru =45.6/1,S/C = 500,20 atm.of H2,20℃,48 h) afforded(S)-1-(2'-methylphenyl)ethanol in 92%ee and〉99% conversion.
文摘Enantiomers of four amino alcohols were resolved by ion-pair chromatography with (+)-10-camphorsulphonic acid as chiral counter ion. Studies of the influence of the mobile phase composition, the solute structure and the mobile phase flow-rate on separation are presented. Under the optimized conditions enantiomeric propanolol, norephedrine, metropolol and salbutamol were separated using dichloromethane-1-pentanol (97:3 v/v) as mobile phase on Lichrospher-100-DIOL column.
文摘We screened 15 Agromyces strains from the Microbacteriaceae family and 16 Gordonia strains from the Gordoniaceae family to investigate their biocatalytic ability to reduce carbonyl compounds. Two Agromyces strains (A. soli NBRC109063 and A. humatus NBRC109085) and two Gordonia strains (G. hydrophobica NBRC16057 and G. malaquae NBRC108250) grew well in 230 medium. The stereoselective reduction of various carbonyl compounds using these four strains was investigated. We discovered that these strains can reduce aliphatic and aromatic α-keto esters and an aromatic α-keto amide. On the basis of the conversion rate and stereoselectivity of the alcohols produced, G. hydrophobica NBRC16057 is a potential biocatalyst for the stereoselective reduction of α-keto esters and an aromatic α-keto amide to the corresponding chiral alcohols. Our results also suggest that the reduction of ethyl 2-methylacetoacetate by wet G. hydrophobica NBRC16057 cells in the presence of L-glutamate is useful for the production of chiral ethyl 3-hydroxy-2-methylbutanoate.
文摘Four binol based pyrrole carboxamide chiral receptors has been synthesized and effectively used as a Chirality Conversion Reagent (CCR) for underivatized amino acids. Three points of interactions take place for the conversion process. They are the reversible imine formation, the internal resonance assisted Hydrogen Bonding (RAHB) and the additional hydrogen bonds between the amino acids and the heterocylic moiety of the pendant groups. The conversion efficiency of all the receptors was found to be comparable with those of the receptors reported earlier.