To reduce vehicle emissions in road networks, a new signal coordination algorithm based on approximate dynamic programming (ADP) is developed for two intersections. Taking the Jetta car as an experimental vehicle, f...To reduce vehicle emissions in road networks, a new signal coordination algorithm based on approximate dynamic programming (ADP) is developed for two intersections. Taking the Jetta car as an experimental vehicle, field tests are conducted in Changchun Street of Changchun city and vehicle emission factors in complete stop and uniform speed states are collected. Queue lengths and signal light colors of approach lanes are selected as state variables, and green switch plans are selected as decision variables of the system. Then the calculation model of the optimization index during the planning horizon is developed based on the basis function method of the ADP. The temporal-difference algorithm is employed to update the weighting factor vector of the approximate function. Simulations are conducted in Matlab and the results show that the established algorithm outperforms the conventional coordination algorithm in reducing vehicle emissions by 8.2%. Sensitive analysis of the planning horizon length on the evaluation index is also conducted and the statistical results show that the optimal length of the planning horizon is directly proportional to the traffic load.展开更多
An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often...An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often confronted with the problem of insufficient data points and noisy circumstances, which led to unsatisfactory results. Compared with fractal dimension as well as the standard ApEn, the improved ApEn can extract information underlying sEMG signals more efficiently and accu- rately. The method introduced here can also be applied to other medium-sized and noisy physiological signals.展开更多
This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation p...This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation property,a more general robust null space property,and establish the stable recovery of signals and matrices under the truncated sparse approximation property.We also explore the relationship between the restricted isometry property and truncated sparse approximation property.And we also prove that if a measurement matrix A or linear map A satisfies truncated sparse approximation property of order k,then the first inequality in restricted isometry property of order k and of order 2k can hold for certain different constantsδk andδ2k,respectively.Last,we show that ifδs(k+|T^c|)<√(s-1)/s for some s≥4/3,then measurement matrix A and linear map A satisfy truncated sparse approximation property of order k.It should be pointed out that when Tc=Ф,our conclusion implies that sparse approximation property of order k is weaker than restricted isometry property of order sk.展开更多
针对正交时频空(Orthogonal Time Frequency Space,OTFS)通信系统信号检测复杂度高的问题,提出一种改进的高斯近似消息传递(Gaussian Approximate Message Passing,GA-MP)检测算法。依据最大后验概率检测准则,对发送信号及隐变量进行逐...针对正交时频空(Orthogonal Time Frequency Space,OTFS)通信系统信号检测复杂度高的问题,提出一种改进的高斯近似消息传递(Gaussian Approximate Message Passing,GA-MP)检测算法。依据最大后验概率检测准则,对发送信号及隐变量进行逐符号高斯近似,基于置信传播算法与联合因子图进行消息传递,用边缘后验概率替代GA-MP中的外部信息以减少运算量,结合阻尼因子提升收敛速度,同时引入概率阈值减少后续更新的节点数,从而使运算复杂度得到有效降低。实验结果表明,改进后的GA-MP算法在保证误码率性能的前提下具有更低的复杂度。展开更多
Epilepsy is a common brain disorder that about 1% of world's population suffers from this disorder. EEG signal is summation of brain electrical activities and has a lot of information about brain states and also u...Epilepsy is a common brain disorder that about 1% of world's population suffers from this disorder. EEG signal is summation of brain electrical activities and has a lot of information about brain states and also used in several epilepsy detection methods. In this study, a wavelet-approximate entropy method is ap-plied for epilepsy detection from EEG signal. First wavelet analysis is applied for decomposing the EEG signal to delta, theta, alpha, beta and gamma sub- ands. Then approximate entropy that is a chaotic measure and can be used in estimation complexity of time series applied to EEG and its sub-bands. We used this method for separating 5 group EEG signals (healthy with opened eye, healthy with closed eye, interictal in none focal zone, interictal in focal zone and seizure onset signals). For evaluating separation ability of this method we used t-student statistical analysis. For all pair of groups we have 99.99% separation probability in at least 2 bands of these 6 bands (EEG and its 5 sub-bands). In comparing some groups we have over 99.98% for EEG and all its sub-bands.展开更多
Most of the near-field source localization methods are developed with the approximated signal model,because the phases of the received near-field signal are highly non-linear.Nevertheless,the approximated signal model...Most of the near-field source localization methods are developed with the approximated signal model,because the phases of the received near-field signal are highly non-linear.Nevertheless,the approximated signal model based methods suffer from model mismatch and performance degradation while the exact signal model based estimation methods usually involve parameter searching or multiple decomposition procedures.In this paper,a search-free near-field source localization method is proposed with the exact signal model.Firstly,the approximative estimates of the direction of arrival(DOA)and range are obtained by using the approximated signal model based method through parameter separation and polynomial rooting operations.Then,the approximative estimates are corrected with the exact signal model according to the exact expressions of phase difference in near-field observations.The proposed method avoids spectral searching and parameter pairing and has enhanced estimation performance.Numerical simulations are provided to demonstrate the effectiveness of the proposed method.展开更多
The effect on intensity correlation time T by input signal is studied for gain-noise model of a single-mode laser driven by colored pump noise and colored quantum noise with colored cross-correlation with a bias signa...The effect on intensity correlation time T by input signal is studied for gain-noise model of a single-mode laser driven by colored pump noise and colored quantum noise with colored cross-correlation with a bias signal modulation in this paper. By using the linear approximation method, we detect that there exists maximum (i.e., resonance) in the curve of the intensity correlation time T upon bias current io when the noise correlation coefficient λ is positive; and there exists minimum (i.e., suppression) in the T-io curve when λ is negative. And whenλ is zero, T increases monotonously with increasing io. Furthermore, the curve of T upon the signal frequency Ω is also studied. Our study shows that no matter what the value of λ is, there exists minimum (i.e., suppression) in the T-Ω curve.展开更多
An approximate solution of the refinement equation was given by its mask, and the approximate sampling theorem for bivariate continuous function was proved by applying the approximate solution . The approximate sampli...An approximate solution of the refinement equation was given by its mask, and the approximate sampling theorem for bivariate continuous function was proved by applying the approximate solution . The approximate sampling function defined uniquely by the mask of the refinement equation is the approximate solution of the equation , a piece-wise linear function , and posseses an explicit computation formula . Therefore the mask of the refinement equation is selected according to one' s requirement, so that one may controll the decay speed of the approximate sampling function .展开更多
Stochastic resonance (SR) is studied in a gain-noise model of a single-mode laser driven by a coloured pump noise and a quantum noise with cross-correlation between real and imaginary parts under a direct signal mod...Stochastic resonance (SR) is studied in a gain-noise model of a single-mode laser driven by a coloured pump noise and a quantum noise with cross-correlation between real and imaginary parts under a direct signal modulation. By using a linear approximation method, we find that the SR appears during the variation of signal-to-noise ratio (SNR) separately with the pump noise self-correlation time τ, the noise correlation coefficient between the real part and the imaginary part of the quantum noise λq, the attenuation coefficient γ' and the deterministic steady-state intensity I0. In addition, it is found that the SR can be characterized not only by the dependence of SNR on the noise variables of and λq, but also by the dependence of SNR on the laser system variables of γ and I0. Thus our investigation extends the characteristic quantity of SR proposed before.展开更多
By using the linear approximation method, the intensity correlation function is calculated for a single-mode laser modulated by a bias signal and driven by colored pump and quantum noises with colored cross-correlatio...By using the linear approximation method, the intensity correlation function is calculated for a single-mode laser modulated by a bias signal and driven by colored pump and quantum noises with colored cross-correlation. We found that, when the correlation time between the two noises is very short, the behavior of the intensity correlation function versus the time, in addition to decreasing monotonously, also exhibits several cases, such as one maximum, one minimum, and two extrema. When the correlation time between the two noises is very long, the behavior of the intensity correlation function exhibits oscillation and the envelope is similar to the case of short cross-correlation time.展开更多
Approximate entropy (ApEn), a measure quantifying regularity and complexity, is believed to be an effective analyzing method of diverse settings that include both deterministic chaotic and stochastic processes, partic...Approximate entropy (ApEn), a measure quantifying regularity and complexity, is believed to be an effective analyzing method of diverse settings that include both deterministic chaotic and stochastic processes, particularly operative in the analysis of physiological signals that involve relatively small amount of data. However, the similarity definition of vectors based on Heaviside function, of which the boundary is discontinuous and hard, may cause some problems in the validity and accuracy of ApEn. To overcome these problems, a modified ApEn based on fuzzy similarity (mApEn) was proposed. The performance on the MIX stochastic model, as well as those on the Logistic map and the Hennon map with noise, shows that the fuzzy similarity-based ApEn gets more satisfying results than the standard ApEn when characterizing systems with different regularities.展开更多
基金The National High Technology Research and Development Program of China (863 Program ) (No. 2011AA110304 )the National Natural Science Foundation of China (No. 50908100)
文摘To reduce vehicle emissions in road networks, a new signal coordination algorithm based on approximate dynamic programming (ADP) is developed for two intersections. Taking the Jetta car as an experimental vehicle, field tests are conducted in Changchun Street of Changchun city and vehicle emission factors in complete stop and uniform speed states are collected. Queue lengths and signal light colors of approach lanes are selected as state variables, and green switch plans are selected as decision variables of the system. Then the calculation model of the optimization index during the planning horizon is developed based on the basis function method of the ADP. The temporal-difference algorithm is employed to update the weighting factor vector of the approximate function. Simulations are conducted in Matlab and the results show that the established algorithm outperforms the conventional coordination algorithm in reducing vehicle emissions by 8.2%. Sensitive analysis of the planning horizon length on the evaluation index is also conducted and the statistical results show that the optimal length of the planning horizon is directly proportional to the traffic load.
基金Project supported by the National Natural Science Foundation of China (No. 60171006) and the National Basic Research Program (973) of China (No. 2005CB724303)
文摘An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often confronted with the problem of insufficient data points and noisy circumstances, which led to unsatisfactory results. Compared with fractal dimension as well as the standard ApEn, the improved ApEn can extract information underlying sEMG signals more efficiently and accu- rately. The method introduced here can also be applied to other medium-sized and noisy physiological signals.
基金supported by the National Natural Science Foundation of China(11871109)NSAF(U1830107)the Science Challenge Project(TZ2018001)
文摘This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation property,a more general robust null space property,and establish the stable recovery of signals and matrices under the truncated sparse approximation property.We also explore the relationship between the restricted isometry property and truncated sparse approximation property.And we also prove that if a measurement matrix A or linear map A satisfies truncated sparse approximation property of order k,then the first inequality in restricted isometry property of order k and of order 2k can hold for certain different constantsδk andδ2k,respectively.Last,we show that ifδs(k+|T^c|)<√(s-1)/s for some s≥4/3,then measurement matrix A and linear map A satisfy truncated sparse approximation property of order k.It should be pointed out that when Tc=Ф,our conclusion implies that sparse approximation property of order k is weaker than restricted isometry property of order sk.
文摘针对正交时频空(Orthogonal Time Frequency Space,OTFS)通信系统信号检测复杂度高的问题,提出一种改进的高斯近似消息传递(Gaussian Approximate Message Passing,GA-MP)检测算法。依据最大后验概率检测准则,对发送信号及隐变量进行逐符号高斯近似,基于置信传播算法与联合因子图进行消息传递,用边缘后验概率替代GA-MP中的外部信息以减少运算量,结合阻尼因子提升收敛速度,同时引入概率阈值减少后续更新的节点数,从而使运算复杂度得到有效降低。实验结果表明,改进后的GA-MP算法在保证误码率性能的前提下具有更低的复杂度。
文摘Epilepsy is a common brain disorder that about 1% of world's population suffers from this disorder. EEG signal is summation of brain electrical activities and has a lot of information about brain states and also used in several epilepsy detection methods. In this study, a wavelet-approximate entropy method is ap-plied for epilepsy detection from EEG signal. First wavelet analysis is applied for decomposing the EEG signal to delta, theta, alpha, beta and gamma sub- ands. Then approximate entropy that is a chaotic measure and can be used in estimation complexity of time series applied to EEG and its sub-bands. We used this method for separating 5 group EEG signals (healthy with opened eye, healthy with closed eye, interictal in none focal zone, interictal in focal zone and seizure onset signals). For evaluating separation ability of this method we used t-student statistical analysis. For all pair of groups we have 99.99% separation probability in at least 2 bands of these 6 bands (EEG and its 5 sub-bands). In comparing some groups we have over 99.98% for EEG and all its sub-bands.
基金supported by the Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space(KF20202109)the National Natural Science Foundation of China(82004259)the Young Talent Training Project of Guangzhou University of Chinese Medicine(QNYC20190110).
文摘Most of the near-field source localization methods are developed with the approximated signal model,because the phases of the received near-field signal are highly non-linear.Nevertheless,the approximated signal model based methods suffer from model mismatch and performance degradation while the exact signal model based estimation methods usually involve parameter searching or multiple decomposition procedures.In this paper,a search-free near-field source localization method is proposed with the exact signal model.Firstly,the approximative estimates of the direction of arrival(DOA)and range are obtained by using the approximated signal model based method through parameter separation and polynomial rooting operations.Then,the approximative estimates are corrected with the exact signal model according to the exact expressions of phase difference in near-field observations.The proposed method avoids spectral searching and parameter pairing and has enhanced estimation performance.Numerical simulations are provided to demonstrate the effectiveness of the proposed method.
文摘The effect on intensity correlation time T by input signal is studied for gain-noise model of a single-mode laser driven by colored pump noise and colored quantum noise with colored cross-correlation with a bias signal modulation in this paper. By using the linear approximation method, we detect that there exists maximum (i.e., resonance) in the curve of the intensity correlation time T upon bias current io when the noise correlation coefficient λ is positive; and there exists minimum (i.e., suppression) in the T-io curve when λ is negative. And whenλ is zero, T increases monotonously with increasing io. Furthermore, the curve of T upon the signal frequency Ω is also studied. Our study shows that no matter what the value of λ is, there exists minimum (i.e., suppression) in the T-Ω curve.
基金the NSF of Henan Province (984051900)the NSF of Henan Education Committee (98110015)the Excellent Teacher Foundation of High School in Henan Province
文摘An approximate solution of the refinement equation was given by its mask, and the approximate sampling theorem for bivariate continuous function was proved by applying the approximate solution . The approximate sampling function defined uniquely by the mask of the refinement equation is the approximate solution of the equation , a piece-wise linear function , and posseses an explicit computation formula . Therefore the mask of the refinement equation is selected according to one' s requirement, so that one may controll the decay speed of the approximate sampling function .
基金Project supported by the National Natural Science Foundation of China (Grant No 10275025).
文摘Stochastic resonance (SR) is studied in a gain-noise model of a single-mode laser driven by a coloured pump noise and a quantum noise with cross-correlation between real and imaginary parts under a direct signal modulation. By using a linear approximation method, we find that the SR appears during the variation of signal-to-noise ratio (SNR) separately with the pump noise self-correlation time τ, the noise correlation coefficient between the real part and the imaginary part of the quantum noise λq, the attenuation coefficient γ' and the deterministic steady-state intensity I0. In addition, it is found that the SR can be characterized not only by the dependence of SNR on the noise variables of and λq, but also by the dependence of SNR on the laser system variables of γ and I0. Thus our investigation extends the characteristic quantity of SR proposed before.
文摘By using the linear approximation method, the intensity correlation function is calculated for a single-mode laser modulated by a bias signal and driven by colored pump and quantum noises with colored cross-correlation. We found that, when the correlation time between the two noises is very short, the behavior of the intensity correlation function versus the time, in addition to decreasing monotonously, also exhibits several cases, such as one maximum, one minimum, and two extrema. When the correlation time between the two noises is very long, the behavior of the intensity correlation function exhibits oscillation and the envelope is similar to the case of short cross-correlation time.
基金The National Basic Research Program (973)of China (No 2005CB724303)
文摘Approximate entropy (ApEn), a measure quantifying regularity and complexity, is believed to be an effective analyzing method of diverse settings that include both deterministic chaotic and stochastic processes, particularly operative in the analysis of physiological signals that involve relatively small amount of data. However, the similarity definition of vectors based on Heaviside function, of which the boundary is discontinuous and hard, may cause some problems in the validity and accuracy of ApEn. To overcome these problems, a modified ApEn based on fuzzy similarity (mApEn) was proposed. The performance on the MIX stochastic model, as well as those on the Logistic map and the Hennon map with noise, shows that the fuzzy similarity-based ApEn gets more satisfying results than the standard ApEn when characterizing systems with different regularities.