The behavior of chloride adsorbed on Ag(100) electrode has been studied using chronoamperometric technique, and the structural transition of chloride layer has been confirmed.
Composite adsorbents of CaC12 and sawdust prepared by carbonization for adsorption refrigeration with NH3 as refrigerant are tested, and the effects of carboniza tion temperature on the sorption capacity and rate are ...Composite adsorbents of CaC12 and sawdust prepared by carbonization for adsorption refrigeration with NH3 as refrigerant are tested, and the effects of carboniza tion temperature on the sorption capacity and rate are analyzed. The results show that the amount of pores in the sawdust of the composite adsorbents carbonized, apart from the content of CaCI2, is the most dominant factor influencing the NH3 sorption on composite adsorbents. The optimum carbonization temperature is 700℃, which gives the maximal NH3 sorption capacity as high as 0.774 kg of NH3 per kg of the composite, and the specific cooling power is approximately between 338 and 869 W/kg with the cycle duration varying from 5 to 20 minutes. The present study demonstrates that the composite absorbent of CaC12 and sawdust prepared by carbonization is more promising and competitive for adsorption refrigeration application.展开更多
文摘The behavior of chloride adsorbed on Ag(100) electrode has been studied using chronoamperometric technique, and the structural transition of chloride layer has been confirmed.
文摘Composite adsorbents of CaC12 and sawdust prepared by carbonization for adsorption refrigeration with NH3 as refrigerant are tested, and the effects of carboniza tion temperature on the sorption capacity and rate are analyzed. The results show that the amount of pores in the sawdust of the composite adsorbents carbonized, apart from the content of CaCI2, is the most dominant factor influencing the NH3 sorption on composite adsorbents. The optimum carbonization temperature is 700℃, which gives the maximal NH3 sorption capacity as high as 0.774 kg of NH3 per kg of the composite, and the specific cooling power is approximately between 338 and 869 W/kg with the cycle duration varying from 5 to 20 minutes. The present study demonstrates that the composite absorbent of CaC12 and sawdust prepared by carbonization is more promising and competitive for adsorption refrigeration application.