Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is...Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions.展开更多
A minimum-modified Debye-Hückel(DH)theory for electrolytes with size asymmetry is developed.Com-pared with the conventional DH theory,the minimum-modified DH theory only introduces an extra surface charge density...A minimum-modified Debye-Hückel(DH)theory for electrolytes with size asymmetry is developed.Com-pared with the conventional DH theory,the minimum-modified DH theory only introduces an extra surface charge density to capture the electrostatic effect of the size asymmetry of the electrolytes and hence facilitates a boundary element method for electrostatic potential calculation.This theory can distinguish the electrostat-ic energies and excess chemical potentials of ions with the same sizes but opposite charges,and is applied to a binary primitive electrolyte solution with moderate electrostatic coupling.Compared with the hyper-netted chain theory,the validity of this modified DH theory demonstrates significant improvement over the conventional DH theory.展开更多
Thiol-ene click reaction is an intriguing strategy for preparing polymer electrolytes due to its high activity,atom economy and less side reaction.However,the explosive reaction rate and the use of non-electrolytic am...Thiol-ene click reaction is an intriguing strategy for preparing polymer electrolytes due to its high activity,atom economy and less side reaction.However,the explosive reaction rate and the use of non-electrolytic amine catalyst hamper its application in in-situ batteries.Herein,a nitrogen-containing eutectic solution is designed as both the catalyst of the thiol-ene reaction and the plasticizer to in-situ synthesize the gel polymer electrolytes,realizing a mild in-situ gelation process and the preparation of high-performance gel electrolytes.The obtained gel polymer electrolytes exhibit a high ionic conductivity of 4×10^(−4)S cm^(−1)and lithium-ion transference number(t_(Li)^(+))of 0.51 at 60°C.The as-assembled Li/LiFePO_(4)(LFP)cell delivers a high initial discharge capacity of 155.9 mAh g^(-1),and a favorable cycling stability with the capacity retention of 82%after 800 cycles at 1 C is also obtained.In addition,this eutectic solution significantly improves the rate performance of the LFP cell with high specific capacity of 141.5 and 126.8 mAh g^(-1)at 5 C and 10 C,respectively,and the cell can steadily work at various charge–discharge rate for 200 cycles.This powerful and efficient strategy may provide a novel way for in-situ preparing gel polymer electrolytes with desirable comprehensive performances.展开更多
A method to generate the dynamic moderate pressure dc glow discharge on the basis of electrolytic cathode in the form of aqueous solution of sodium bicarbonate NaHCO3 is described. Photo and video images of the discha...A method to generate the dynamic moderate pressure dc glow discharge on the basis of electrolytic cathode in the form of aqueous solution of sodium bicarbonate NaHCO3 is described. Photo and video images of the discharge are presented as well as the synchronized therewith “oscillograms” of current and voltage. Different phases of the discharge were discovered, one of which is a quasi-stationary glow discharge with the foamy cathode, was recorded for the first time. It was shown, that in this phase the discharge is supported by a so-called three-dimensional cathode spot, having the finite volume. The time-spatial diagram was plotted for the discharge. The Rayleigh-Taylor instability in the two-layered electrolytic cathode was recorded.展开更多
AIM: To compare same-day whole-dose vs split-dose of 2-litre polyethylene glycol electrolyte lavage solution (PEG-ELS) plus bisacodyl for colon cleansing for morning colonoscopy.
An empiric equation, G ex H 2O /(1- x (H 2O)) 2= α+β·x (H 2O)/ln( x (H 2O)), representing the relation between the excess free energy G ex H 2O and mole fraction of water x (H 2O) in binary electrolyte solution...An empiric equation, G ex H 2O /(1- x (H 2O)) 2= α+β·x (H 2O)/ln( x (H 2O)), representing the relation between the excess free energy G ex H 2O and mole fraction of water x (H 2O) in binary electrolyte solution, was developed and the parameters α and β in the equation were determined by fitting the experimental data for some binary aqueous systems of electrolytes such as CuCl 2, NiCl 2, HCl, NaCl, KCl, CaCl 2 and BaCl 2. The activities of water in such ternary and multi component systems composed of 7 binaries as HClH 2OCuCl 2, HClH 2ONiCl 2, HClH 2ONaCl, NaClH 2OKCl, NaCl H 2OCaCl 2, KClH 2OCaCl 2, NaClH 2OBaCl 2, KClH 2OCaCl 2 and NaClH 2OKClBaCl 2 were predicted by a simplified sub regular solution model developed by authors from the corresponding binary systems. The predicted results are in good agreement with the measured ones. [展开更多
The continuous reduction of electrolytes by Li metal leads to a poor lifespan of lithium metal batteries(LMBs). Low Coulombic efficiency(CE) and safety concern due to dendrite growth are the challenging issues for LMB...The continuous reduction of electrolytes by Li metal leads to a poor lifespan of lithium metal batteries(LMBs). Low Coulombic efficiency(CE) and safety concern due to dendrite growth are the challenging issues for LMB electrolyte design. Novel electrolytes such as highly concentrated electrolytes(HCEs) have been proposed for improving interphase stability. However, this strategy is currently limited for high cost due to the use of a large amount of lithium salts as well as their high viscosity, reduced ion mobility, and poor wettability. In this work, we propose a new type of electrolyte having a moderate concentration. The electrolyte has the advantage of HCEs as the anion is preferentially reduced to form inorganic solidelectrolyte-interphase(SEI). Such optimization has been confirmed through combined spectroscopic and electrochemical characterizations and supported with the first-principle molecular dynamics simulation. We have shown the intrinsic connections between solution structure and their electrochemical stability. The 2.0 M LiDFOB/PC electrolyte, as predicted by our characterizations and simulations, allows stable charge–discharge of LNMO|Li cells at 5C for more than 1500 cycles. The 2.0 M electrolyte generates a dense layer of SEI containing fluoro-oxoborates, Li_(3)BO_(3), LiF, Li_(2)CO_(3), and some organic species effectively passivating the lithium metal, as confirmed by electron microscopy, X-ray photoelectron spectroscopy,and solid-state nuclear magnetic resonance.展开更多
As the structure of electrical double layer(EDL)is crucial for the transport properties of ions in micro/nanochannels,to demonstrate the effects of the ion-ion correlations on EDL structures in mixture electrolyte sol...As the structure of electrical double layer(EDL)is crucial for the transport properties of ions in micro/nanochannels,to demonstrate the effects of the ion-ion correlations on EDL structures in mixture electrolyte solutions,the interaction forces between two mica surfaces immersed in different volume fractions of LaCl3/KCl and LaCl3/MgCl2 mixture solutions with a total ionic strength of 10^-4 mol/L were measured using a surface forces apparatus(SFA).The results reveal that the surface charge of mica surfaces can be inversed at a critical concentration of La^3+ions in electrolyte solutions,due to the correlations between La^3+ions.The addition of monovalent has negligible effects on ion-ion correlations,while the charge inversion was slightly suppressed by introducing the divalent ions.The mechanism of charge inversion in mixture electrolyte solutions was analyzed based on the strongly correlated liquid(SCL)theory.These findings provide implications for understanding the effects of ion-ion correlations on EDL structures,surface charge properties,and ion transportation.展开更多
The simple equation relating the activity coefficient of each solute in mixed electrolyte solution to its value in binary solutions under isopiestic equilibrium was tested by comparison with the experimental data for ...The simple equation relating the activity coefficient of each solute in mixed electrolyte solution to its value in binary solutions under isopiestic equilibrium was tested by comparison with the experimental data for the 18 electrolyte solutions consisting of 1:1, 1:2, and 1:3 electrolytes. The isopiestic measurements were made on the quaternary system BaCl2-NH4Br-NaI-H2O and its ternary subsystems NaI-NH4Br-H2O, NaI-BaCl2-H2O, and NH4Br-BaCl2-H2O at 298.15K. The results were used to test the applicability of the Zdanovskii's rule to the mixed electrolyte solutions which contain no common ions, and the agreement is excellent. The activity coefficients of the solutes in the above quaternary and ternary systems calculated from the above-mentioned simple equation are in good agreement with the Pitzer's equation.展开更多
We fabricated a microfluidic chip with simple structure and good sealing performance,and studied the influence of the electric field on THz absorption intensity of liquid samples treated at different times by using TH...We fabricated a microfluidic chip with simple structure and good sealing performance,and studied the influence of the electric field on THz absorption intensity of liquid samples treated at different times by using THz time domain spectroscopy system.The tested liquids were deionised water and CuSO_(4),CuC_(l2),NaHCO_(3),Na_(2)CO_(3) and NaCl solutions.The transmission intensity of the THz wave increases as the standing time of the electrolyte solution in the electric field increases.The applied electric field alters the dipole moment of water molecules in the electrolyte solution,which affects the vibration and rotation of the whole water molecules,breaks the hydrogen bonds in the water,increases the number of single water molecules and leads to the enhancement of the THz transmission spectrum.展开更多
A new expression for the osmotic and activity coefficients in single electrolyte solution is developed by reforming the Pitzer's osmotic equation.As a result,the correlations between the oMX,the sum of the"ha...A new expression for the osmotic and activity coefficients in single electrolyte solution is developed by reforming the Pitzer's osmotic equation.As a result,the correlations between the oMX,the sum of the"hard core"radii of ionsβ^(0)_(MX)andβ^(1)X_(MX),and the second virial coefficients/jjJx and'n Pitzer's equations are obtained.Furthermore,an"ionic overlap"model and its relevant equation are suggested.The relationships between the thermodynamic properties of aqueous electrolytes and the characteristic of their ions(ionic radii and ionic hydration)are discussed quantitatively.展开更多
Transport properties and the associated structural heterogeneity of room temperature aqueous ionic liquids and especially of super-concentrated electrolyte aqueous solutions have received increasing attention,due to t...Transport properties and the associated structural heterogeneity of room temperature aqueous ionic liquids and especially of super-concentrated electrolyte aqueous solutions have received increasing attention,due to their potential application in ionic battery.This paper briefly reviews the results reported mainly since 2010 about the liquid-liquid separation,aggregation of polar and apolar domains in neat RTILs,and solvent clusters and 3D networks chiefly constructed by anions in super-concentrated electrolyte solutions.At the same time,the dominating effect of desolvation process of metal ions at electrode/electrolyte interface upon the transport of metal ions is stressed.This paper also presents the current understanding of how water affects the anion-cation interaction,structural heterogeneities,the structure of primary coordination sheath of metal ions and consequently their transport properties in free water-poor electrolytes.展开更多
The performance of gas diffusion porous electrode starved of electrolyte solution can be significantly increased by decreasing the thickness of uneven liquid film covering the catalyst agglomerates.
A two parameters equation of state (EOS) for nonaqueous electrolyte solutions system has been developed. The equation is in terms of Helmholtz free energy and incorporated with results of low density expansion of non-...A two parameters equation of state (EOS) for nonaqueous electrolyte solutions system has been developed. The equation is in terms of Helmholtz free energy and incorporated with results of low density expansion of non-primitive mean spherical approximation. The EOS was tested for experimental data reported in literatures of 9 nonaqueous single electrolyte solutions of which the temperature was 298.15 K, and it also has a good predictive capability for nonaqueous electrolyte solutions at different temperature in this work. The comparisons with EOSs published earlier by other researchers in literatures are carried out in detail.展开更多
Accurate calculation of thermodynamic properties of electrolyte solution is essential in the design and optimization of many processes in chemical industries. A new electrolyte equation of state is developed for aqueo...Accurate calculation of thermodynamic properties of electrolyte solution is essential in the design and optimization of many processes in chemical industries. A new electrolyte equation of state is developed for aqueous electrolyte solutions. The Carnahan-Starling repulsive model and an attractive term based on square-well potential are adopted to represent the short range interaction of ionic and molecular species in the new electrolyte EOS. The long range interaction of ionic species is expressed by a simplified version of Mean Spherical Approximation theory (MSA). The new equation of state also contains a Born term for charging free energy of ions. Three adjustable parameters of new eEOS per each electrolyte solution are size parameter, square-well potential depth and square-well potential interaction range. The new eEOS is applied for correlation of mean activity coefficient and prediction of osmotic coefficient of various strong aqueous electrolyte solutions at 25℃ and 0.1 MPa. In addition, the extension of the new eEOS for correlation of mean activity coefficient and solution density of a few aqueous electrolytes at temperature range of 0 to 100℃ is carried out.展开更多
In this paper we have systematically studied V-L equilibrium in ternary aqueous solutions containingvolatile electrolytes by introducing a ternary interaction term into Edwards generalized molecular thermody-namic mod...In this paper we have systematically studied V-L equilibrium in ternary aqueous solutions containingvolatile electrolytes by introducing a ternary interaction term into Edwards generalized molecular thermody-namic model and optimizing several adjustable parameters.The program PARA9 with flexible functions ofdoing a series of calculations has been developed and carried out on a TQ-16 computer.It can be usedeither for directly calculating the V-L equilibrium or for optimizing the adjustable parameters.For the sys-toms(NH3-CO3-H2O3,NH3-H2S-H2O and NH3-SO2-H2O)satisfactory results have been obtained withrelative mean deviation of 5-10%.Besides,several sets of adjustable parameters and valuable information ofactivity coefficients,equilibrium concentrations of ions and molecules in solutions are obtained.展开更多
Pattern recognition methods were used to treat the experimentally measured data of Pitzer’s coefficients of 107 electrolytes, to find the relationships between the ionic structural parameters of these electrolytes an...Pattern recognition methods were used to treat the experimentally measured data of Pitzer’s coefficients of 107 electrolytes, to find the relationships between the ionic structural parameters of these electrolytes and Pitzer’s coefficients. It is found that these relationships can be approximately expressed as linear equations of four dimensionless numbers, (R_+/R_-), (R_++R_-)/Z_+Z_-, (Z_+/Z_-) and (R_t/R_l), where R_+ and R_- are the cationic and anionic radii respectively; Z_+ and Z_- are the cationic and anionic charge numbers respectively, and (R_t/R_l) denotes the nonsphericity of some non-spherical ions. Besides, it is found that the difference of the nuclear magnetic resonance measured rotational relaxation time of water molecules around cations and anions, |Δτ|, has good correlation with Pitzer’s coefficients. The relationships can be interpreted by the theory of corresponding states of ionic solutions. Based on the relationships, an example of application to some hydrometallurgical process was discussed.展开更多
The calculating models of mass action concentrations for electrolyte aqueous solutions NaBr-H2O, LiNO3-H2O, HNO3-H2O, and KF-H2O have been developed at 298.15 K and their molalities ranging from 0.1 mol/kg to saturati...The calculating models of mass action concentrations for electrolyte aqueous solutions NaBr-H2O, LiNO3-H2O, HNO3-H2O, and KF-H2O have been developed at 298.15 K and their molalities ranging from 0.1 mol/kg to saturation according to the ion and molecule coexistence theory as well as mass action law. The calculated mass action concentration is based on pure species as the standard state and the mole fraction as the concentration unit, and the reported activities are usually based on infinite dilution as the standard state and molality as the concentration unit. Hence, the calculated mass action concentration must be transformed to the same standard state and concentration unit. The transformation coefficients between calculated mass action concentrations and reported activities of the same component fluctuate in a very narrow range. Thus, the transformed mass action concentrations not only agree well with reported activities, but also strictly obey mass action law. The calculated results show that the new developed models can embody the intrinsic structure of investigated four electrolyte aqueous solutions. The results also indicate that mass action law has its widespread applicability to electrolyte binary aqueous solutions.展开更多
A simplified subregular solution model was developed for describing the activities of MgCl 2 in both KCl MgCl 2 LiCl and CaCl 2 MgCl 2 NaCl systems on the assumption that the electrolytes in the solution are ...A simplified subregular solution model was developed for describing the activities of MgCl 2 in both KCl MgCl 2 LiCl and CaCl 2 MgCl 2 NaCl systems on the assumption that the electrolytes in the solution are treated as independent particles in stead of their ion forms and the interchange energy between the KCl LiCl (or CaCl 2 NaCl) pair is ignored as compared to those of the KCl MgCl 2(or CaCl 2 MgCl 2) and MgCl 2 LiCl (or MgCl 2 NaCl) pairs. The calculating results on the model agree with the observed very well.展开更多
基金supported by the National Natural Science Foundation of China(No.21776264).
文摘Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions.
基金supported by the National Natural Science Foundation of China(No.21863001)a startup package from Guizhou Education University(to Tiejun Xiao)+1 种基金the Natural Science Foundation of de-partment of education of Guizhou province(No.QJKY[2015]483)a startup package from Guizhou Education University(to Yun Zhou).
文摘A minimum-modified Debye-Hückel(DH)theory for electrolytes with size asymmetry is developed.Com-pared with the conventional DH theory,the minimum-modified DH theory only introduces an extra surface charge density to capture the electrostatic effect of the size asymmetry of the electrolytes and hence facilitates a boundary element method for electrostatic potential calculation.This theory can distinguish the electrostat-ic energies and excess chemical potentials of ions with the same sizes but opposite charges,and is applied to a binary primitive electrolyte solution with moderate electrostatic coupling.Compared with the hyper-netted chain theory,the validity of this modified DH theory demonstrates significant improvement over the conventional DH theory.
基金the National Natural Science Foundation of China(Grant no.51973073)the Fel owship of China Postdoctoral Science Foundation(2021M701303)the analytical and testing assistance from the Analysis and Testing Center of HUST for support of this work
文摘Thiol-ene click reaction is an intriguing strategy for preparing polymer electrolytes due to its high activity,atom economy and less side reaction.However,the explosive reaction rate and the use of non-electrolytic amine catalyst hamper its application in in-situ batteries.Herein,a nitrogen-containing eutectic solution is designed as both the catalyst of the thiol-ene reaction and the plasticizer to in-situ synthesize the gel polymer electrolytes,realizing a mild in-situ gelation process and the preparation of high-performance gel electrolytes.The obtained gel polymer electrolytes exhibit a high ionic conductivity of 4×10^(−4)S cm^(−1)and lithium-ion transference number(t_(Li)^(+))of 0.51 at 60°C.The as-assembled Li/LiFePO_(4)(LFP)cell delivers a high initial discharge capacity of 155.9 mAh g^(-1),and a favorable cycling stability with the capacity retention of 82%after 800 cycles at 1 C is also obtained.In addition,this eutectic solution significantly improves the rate performance of the LFP cell with high specific capacity of 141.5 and 126.8 mAh g^(-1)at 5 C and 10 C,respectively,and the cell can steadily work at various charge–discharge rate for 200 cycles.This powerful and efficient strategy may provide a novel way for in-situ preparing gel polymer electrolytes with desirable comprehensive performances.
文摘A method to generate the dynamic moderate pressure dc glow discharge on the basis of electrolytic cathode in the form of aqueous solution of sodium bicarbonate NaHCO3 is described. Photo and video images of the discharge are presented as well as the synchronized therewith “oscillograms” of current and voltage. Different phases of the discharge were discovered, one of which is a quasi-stationary glow discharge with the foamy cathode, was recorded for the first time. It was shown, that in this phase the discharge is supported by a so-called three-dimensional cathode spot, having the finite volume. The time-spatial diagram was plotted for the discharge. The Rayleigh-Taylor instability in the two-layered electrolytic cathode was recorded.
基金Supported by University of Malaya Research Grant,Project No.RG536-13HTM
文摘AIM: To compare same-day whole-dose vs split-dose of 2-litre polyethylene glycol electrolyte lavage solution (PEG-ELS) plus bisacodyl for colon cleansing for morning colonoscopy.
文摘An empiric equation, G ex H 2O /(1- x (H 2O)) 2= α+β·x (H 2O)/ln( x (H 2O)), representing the relation between the excess free energy G ex H 2O and mole fraction of water x (H 2O) in binary electrolyte solution, was developed and the parameters α and β in the equation were determined by fitting the experimental data for some binary aqueous systems of electrolytes such as CuCl 2, NiCl 2, HCl, NaCl, KCl, CaCl 2 and BaCl 2. The activities of water in such ternary and multi component systems composed of 7 binaries as HClH 2OCuCl 2, HClH 2ONiCl 2, HClH 2ONaCl, NaClH 2OKCl, NaCl H 2OCaCl 2, KClH 2OCaCl 2, NaClH 2OBaCl 2, KClH 2OCaCl 2 and NaClH 2OKClBaCl 2 were predicted by a simplified sub regular solution model developed by authors from the corresponding binary systems. The predicted results are in good agreement with the measured ones. [
基金financial support from the National Natural Science Foundation of China (21922410)the Zhejiang Provincial Natural Science Foundation (R19B050003 and LQ21B030006)+2 种基金the Scientific Research Fund of Zhejiang Provincial Education Department (Y201839549)the Zhejiang University K.P. Chao’s High Technology Development Foundation (2018RC009)the Postdoctoral Science Foundation of Zhejiang Province (ZJ2020079)。
文摘The continuous reduction of electrolytes by Li metal leads to a poor lifespan of lithium metal batteries(LMBs). Low Coulombic efficiency(CE) and safety concern due to dendrite growth are the challenging issues for LMB electrolyte design. Novel electrolytes such as highly concentrated electrolytes(HCEs) have been proposed for improving interphase stability. However, this strategy is currently limited for high cost due to the use of a large amount of lithium salts as well as their high viscosity, reduced ion mobility, and poor wettability. In this work, we propose a new type of electrolyte having a moderate concentration. The electrolyte has the advantage of HCEs as the anion is preferentially reduced to form inorganic solidelectrolyte-interphase(SEI). Such optimization has been confirmed through combined spectroscopic and electrochemical characterizations and supported with the first-principle molecular dynamics simulation. We have shown the intrinsic connections between solution structure and their electrochemical stability. The 2.0 M LiDFOB/PC electrolyte, as predicted by our characterizations and simulations, allows stable charge–discharge of LNMO|Li cells at 5C for more than 1500 cycles. The 2.0 M electrolyte generates a dense layer of SEI containing fluoro-oxoborates, Li_(3)BO_(3), LiF, Li_(2)CO_(3), and some organic species effectively passivating the lithium metal, as confirmed by electron microscopy, X-ray photoelectron spectroscopy,and solid-state nuclear magnetic resonance.
基金The National Natural Science Foundation of China(No.51605090)the Natural Science Foundation of Jiangsu Province(No.BK20160776,BK20160670)Research Foundation of Nanjing Institute of Technology(No.YKJ201502)。
文摘As the structure of electrical double layer(EDL)is crucial for the transport properties of ions in micro/nanochannels,to demonstrate the effects of the ion-ion correlations on EDL structures in mixture electrolyte solutions,the interaction forces between two mica surfaces immersed in different volume fractions of LaCl3/KCl and LaCl3/MgCl2 mixture solutions with a total ionic strength of 10^-4 mol/L were measured using a surface forces apparatus(SFA).The results reveal that the surface charge of mica surfaces can be inversed at a critical concentration of La^3+ions in electrolyte solutions,due to the correlations between La^3+ions.The addition of monovalent has negligible effects on ion-ion correlations,while the charge inversion was slightly suppressed by introducing the divalent ions.The mechanism of charge inversion in mixture electrolyte solutions was analyzed based on the strongly correlated liquid(SCL)theory.These findings provide implications for understanding the effects of ion-ion correlations on EDL structures,surface charge properties,and ion transportation.
基金the National-Natural Science Foundation of China (No.20476059, No.20276037) and 863 Hi-Technology Research and Development Program of China (2004 AA616040).
文摘The simple equation relating the activity coefficient of each solute in mixed electrolyte solution to its value in binary solutions under isopiestic equilibrium was tested by comparison with the experimental data for the 18 electrolyte solutions consisting of 1:1, 1:2, and 1:3 electrolytes. The isopiestic measurements were made on the quaternary system BaCl2-NH4Br-NaI-H2O and its ternary subsystems NaI-NH4Br-H2O, NaI-BaCl2-H2O, and NH4Br-BaCl2-H2O at 298.15K. The results were used to test the applicability of the Zdanovskii's rule to the mixed electrolyte solutions which contain no common ions, and the agreement is excellent. The activity coefficients of the solutes in the above quaternary and ternary systems calculated from the above-mentioned simple equation are in good agreement with the Pitzer's equation.
基金Project supported by the National Natural Science Foundation of China(Grant No.61575131).
文摘We fabricated a microfluidic chip with simple structure and good sealing performance,and studied the influence of the electric field on THz absorption intensity of liquid samples treated at different times by using THz time domain spectroscopy system.The tested liquids were deionised water and CuSO_(4),CuC_(l2),NaHCO_(3),Na_(2)CO_(3) and NaCl solutions.The transmission intensity of the THz wave increases as the standing time of the electrolyte solution in the electric field increases.The applied electric field alters the dipole moment of water molecules in the electrolyte solution,which affects the vibration and rotation of the whole water molecules,breaks the hydrogen bonds in the water,increases the number of single water molecules and leads to the enhancement of the THz transmission spectrum.
基金Supported by the National Natural Science Foundation of China (No.20476059, No.20276037) and 863 Hi-Technology Re-search and Development Program of China (2004 AA616040).
文摘A new expression for the osmotic and activity coefficients in single electrolyte solution is developed by reforming the Pitzer's osmotic equation.As a result,the correlations between the oMX,the sum of the"hard core"radii of ionsβ^(0)_(MX)andβ^(1)X_(MX),and the second virial coefficients/jjJx and'n Pitzer's equations are obtained.Furthermore,an"ionic overlap"model and its relevant equation are suggested.The relationships between the thermodynamic properties of aqueous electrolytes and the characteristic of their ions(ionic radii and ionic hydration)are discussed quantitatively.
基金the National Natural Science Foundation of China(Grant Nos.11974385 and 91956101)the Fund from the Chinese Academy of Sciences(Grant No.1731300500030)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB07030100).
文摘Transport properties and the associated structural heterogeneity of room temperature aqueous ionic liquids and especially of super-concentrated electrolyte aqueous solutions have received increasing attention,due to their potential application in ionic battery.This paper briefly reviews the results reported mainly since 2010 about the liquid-liquid separation,aggregation of polar and apolar domains in neat RTILs,and solvent clusters and 3D networks chiefly constructed by anions in super-concentrated electrolyte solutions.At the same time,the dominating effect of desolvation process of metal ions at electrode/electrolyte interface upon the transport of metal ions is stressed.This paper also presents the current understanding of how water affects the anion-cation interaction,structural heterogeneities,the structure of primary coordination sheath of metal ions and consequently their transport properties in free water-poor electrolytes.
文摘The performance of gas diffusion porous electrode starved of electrolyte solution can be significantly increased by decreasing the thickness of uneven liquid film covering the catalyst agglomerates.
文摘A two parameters equation of state (EOS) for nonaqueous electrolyte solutions system has been developed. The equation is in terms of Helmholtz free energy and incorporated with results of low density expansion of non-primitive mean spherical approximation. The EOS was tested for experimental data reported in literatures of 9 nonaqueous single electrolyte solutions of which the temperature was 298.15 K, and it also has a good predictive capability for nonaqueous electrolyte solutions at different temperature in this work. The comparisons with EOSs published earlier by other researchers in literatures are carried out in detail.
文摘Accurate calculation of thermodynamic properties of electrolyte solution is essential in the design and optimization of many processes in chemical industries. A new electrolyte equation of state is developed for aqueous electrolyte solutions. The Carnahan-Starling repulsive model and an attractive term based on square-well potential are adopted to represent the short range interaction of ionic and molecular species in the new electrolyte EOS. The long range interaction of ionic species is expressed by a simplified version of Mean Spherical Approximation theory (MSA). The new equation of state also contains a Born term for charging free energy of ions. Three adjustable parameters of new eEOS per each electrolyte solution are size parameter, square-well potential depth and square-well potential interaction range. The new eEOS is applied for correlation of mean activity coefficient and prediction of osmotic coefficient of various strong aqueous electrolyte solutions at 25℃ and 0.1 MPa. In addition, the extension of the new eEOS for correlation of mean activity coefficient and solution density of a few aqueous electrolytes at temperature range of 0 to 100℃ is carried out.
文摘In this paper we have systematically studied V-L equilibrium in ternary aqueous solutions containingvolatile electrolytes by introducing a ternary interaction term into Edwards generalized molecular thermody-namic model and optimizing several adjustable parameters.The program PARA9 with flexible functions ofdoing a series of calculations has been developed and carried out on a TQ-16 computer.It can be usedeither for directly calculating the V-L equilibrium or for optimizing the adjustable parameters.For the sys-toms(NH3-CO3-H2O3,NH3-H2S-H2O and NH3-SO2-H2O)satisfactory results have been obtained withrelative mean deviation of 5-10%.Besides,several sets of adjustable parameters and valuable information ofactivity coefficients,equilibrium concentrations of ions and molecules in solutions are obtained.
文摘Pattern recognition methods were used to treat the experimentally measured data of Pitzer’s coefficients of 107 electrolytes, to find the relationships between the ionic structural parameters of these electrolytes and Pitzer’s coefficients. It is found that these relationships can be approximately expressed as linear equations of four dimensionless numbers, (R_+/R_-), (R_++R_-)/Z_+Z_-, (Z_+/Z_-) and (R_t/R_l), where R_+ and R_- are the cationic and anionic radii respectively; Z_+ and Z_- are the cationic and anionic charge numbers respectively, and (R_t/R_l) denotes the nonsphericity of some non-spherical ions. Besides, it is found that the difference of the nuclear magnetic resonance measured rotational relaxation time of water molecules around cations and anions, |Δτ|, has good correlation with Pitzer’s coefficients. The relationships can be interpreted by the theory of corresponding states of ionic solutions. Based on the relationships, an example of application to some hydrometallurgical process was discussed.
文摘The calculating models of mass action concentrations for electrolyte aqueous solutions NaBr-H2O, LiNO3-H2O, HNO3-H2O, and KF-H2O have been developed at 298.15 K and their molalities ranging from 0.1 mol/kg to saturation according to the ion and molecule coexistence theory as well as mass action law. The calculated mass action concentration is based on pure species as the standard state and the mole fraction as the concentration unit, and the reported activities are usually based on infinite dilution as the standard state and molality as the concentration unit. Hence, the calculated mass action concentration must be transformed to the same standard state and concentration unit. The transformation coefficients between calculated mass action concentrations and reported activities of the same component fluctuate in a very narrow range. Thus, the transformed mass action concentrations not only agree well with reported activities, but also strictly obey mass action law. The calculated results show that the new developed models can embody the intrinsic structure of investigated four electrolyte aqueous solutions. The results also indicate that mass action law has its widespread applicability to electrolyte binary aqueous solutions.
文摘A simplified subregular solution model was developed for describing the activities of MgCl 2 in both KCl MgCl 2 LiCl and CaCl 2 MgCl 2 NaCl systems on the assumption that the electrolytes in the solution are treated as independent particles in stead of their ion forms and the interchange energy between the KCl LiCl (or CaCl 2 NaCl) pair is ignored as compared to those of the KCl MgCl 2(or CaCl 2 MgCl 2) and MgCl 2 LiCl (or MgCl 2 NaCl) pairs. The calculating results on the model agree with the observed very well.