期刊文献+
共找到1,404篇文章
< 1 2 71 >
每页显示 20 50 100
Pretreatment study on chloridizing segregation and magnetic separation of low-grade nickel laterites 被引量:3
1
作者 刘婉蓉 李新海 +4 位作者 胡启阳 王志兴 古可专 李金辉 张琏鑫 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第S1期82-86,共5页
The chloridizing segregation and magnetic separation of low-grade nickel laterites from Yunnan province of China was investigated.The nickel laterites were characterized by microscopic investigations,using X-ray diffr... The chloridizing segregation and magnetic separation of low-grade nickel laterites from Yunnan province of China was investigated.The nickel laterites were characterized by microscopic investigations,using X-ray diffractometry(XRD)and energy dispersive spectrometry(EDS)techniques.The pellets,which were prepared with magnesium chloride and coke as chloride agent and reductant respectively,were heated to a high temperature,and the pellets after cooling were crushed for magnetic separation.A series of experiments were conducted to examine the effect of chlorinating agent dosage,reductant dosage,chloridizing temperature and chloridizing time on enrichment grade of Ni and Co.The results indicate that the four factors have significant effects on the extractions of Ni and Co.The optimum conditions are as follows:the amounts of magnesium chloride and coke are 6%and 2%,respectively,chloridizing temperature is 1 253 K,and chloridizing time is 90 min.Under the conditions,extractions of Ni and Co reach 91.5%and 82.3%,respectively. 展开更多
关键词 nickel laterites NICKEL COBALT chloridizing segregation magnetic separation
下载PDF
Chloride ion battery:A new emerged electrochemical system for next-generation energy storage
2
作者 Shulin Chen Lu Wu +3 位作者 Yu Liu Peng Zhou Qinyou An Liqiang Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期154-168,I0004,共16页
In the scope of developing new electrochemical concepts to build batteries with high energy density,chloride ion batteries(CIBs)have emerged as a candidate for the next generation of novel electrochemical energy stora... In the scope of developing new electrochemical concepts to build batteries with high energy density,chloride ion batteries(CIBs)have emerged as a candidate for the next generation of novel electrochemical energy storage technologies,which show the potential in matching or even surpassing the current lithium metal batteries in terms of energy density,dendrite-free safety,and elimination of the dependence on the strained lithium and cobalt resources.However,the development of CIBs is still at the initial stage with unsatisfactory performance and several challenges have hindered them from reaching commercialization.In this review,we examine the current advances of CIBs by considering the electrode material design to the electrolyte,thus outlining the new opportunities of aqueous CIBs especially combined with desalination,chloride redox battery,etc.With respect to the developing road of lithium ion and fluoride ion batteries,the possibility of using solid-state chloride ion conductors to replace liquid electrolytes is tentatively discussed.Going beyond,perspectives and clear suggestions are concluded by highlighting the major obstacles and by prescribing specific research topics to inspire more efforts for CIBs in large-scale energy storage applications. 展开更多
关键词 Chloride ion battery Anion shuttling Conversion reaction Chloride redox
下载PDF
Strategies of selective electroreduction of aqueous nitrate to N_(2) in chloride-free system:A critical review
3
作者 Fukuan Li Weizhe Zhang +2 位作者 Peng Zhang Ao Gong Kexun Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期198-216,共19页
Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-... Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-added ammonia from the perspective of electrocatalytic NH_(3) synthesis.By reason of the undesired formation of ammonia is dominant during electroreduction of nitrate-containing wastewater,chloride has been widely used to improve N_(2) selectivity.Nevertheless,selective electroreduction of nitrate to N2 gas in chloride-containing system poses several drawbacks.In this review,we focus on the key strategies for efficiently enhancing N_(2) selectivity of electroreduction of nitrate in chloride-free system,including optimal selection of elements,combining an active metal catalyst with another metal,manipulating the crystalline morphology and facet orientation,constructing core–shell structure catalysts,etc.Before summarizing the strategies,four possible reaction pathways of electro-reduction of nitrate to N_(2) are discussed.Overall,this review attempts to provide practical strategies for enhancing N2 selectivity without the aid of electrochlorination and highlight directions for future research for designing appropriate electrocatalyst for final electrocatalytic denitrifi-cation. 展开更多
关键词 NITRATE CHLORIDE ELECTROREDUCTION SELECTIVITY NITROGEN
下载PDF
One-step preparation of efficient cuprous chloride catalyst for direct synthesis of trimethoxysilane
4
作者 Jiaxin Zhang Lu Wang +5 位作者 Zhiqiang Ma Chuanjun Di Guanghui Chen Jipeng Dong Jianlong Li Fei Gao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期161-171,共11页
CuCl-based catalysts are the most commonly used catalysts for the“direct synthesis”of trimethoxysilane(M3).CuCl species are sensitive to air and water,and are prone to oxidation deactivation.When CuCl is directly us... CuCl-based catalysts are the most commonly used catalysts for the“direct synthesis”of trimethoxysilane(M3).CuCl species are sensitive to air and water,and are prone to oxidation deactivation.When CuCl is directly used as a catalyst,it needs to be purified before the utilization,and the operating conditions for the catalyst preparation are relatively harsh,requiring the inert gas environment.Considering a high-temperature activation step required for CuCl-based catalysts used for catalyzing synthesis of M3 to form active phase Cu–Si alloys(Cu_(x)Si)with Si powder,in this work,a series of catalysts for the“direct synthesis”of M3 were obtained by a one-step high-temperature activation of the mixture of stable CuCl_(2) precursors,activated carbon-reducing agent,and Si powder,simultaneously achieving the reduction of CuCl_(2) to CuCl and the formation of active phase Cu_(x)Si alloys of CuCl with Si powder.The prepared samples were characterized through various characterization techniques,and investigated for the catalytic performance for the“direct synthesis”of M3.Moreover,the operation conditions were optimized,including the activation temperature,catalyst dosage,Si powder particle size,and reaction temperature.The characterization results indicate that during the one-step activation process,the CuCl_(2) precursor is reduced to CuCl,and the resulting CuCl simultaneously reacts with Si powder to form active phases Cu3Si and Cu15Si4 alloys.The optimal catalyst Sacm(250,0.8:10)exhibits a good catalytic activity with selectivity of 95%and yield of 77%for M3,and shows a good universality for various alcohol substrates.Furthermore,the catalytic mechanism of the prepared catalyst for the“direct synthesis”of M3 was discussed. 展开更多
关键词 TRIMETHOXYSILANE Cuprous chloride CATALYSIS Catalyst activation Reduction Active phase formation
下载PDF
Oxygen-assisted zinc recovery from electric arc furnace dust using magnesium chloride
5
作者 Jingdong Huang Xiao Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2300-2311,共12页
Electric arc furnace(EAF)dust is an important secondary resource containing metals,such as zinc(Zn)and iron(Fe).Recover-ing Zn from EAF dust can contribute to resource recycling and reduce environmental impacts.Howeve... Electric arc furnace(EAF)dust is an important secondary resource containing metals,such as zinc(Zn)and iron(Fe).Recover-ing Zn from EAF dust can contribute to resource recycling and reduce environmental impacts.However,the high chemical stability of ZnFe_(2)O_(4)in EAF dust poses challenges to Zn recovery.To address this issue,a facile approach that involves oxygen-assisted chlorination using molten MgCl_(2)is proposed.This work focused on elucidating the role of O2 in the reaction between ZnFe_(2)O_(4)and molten MgCl_(2).The results demonstrate that MgCl_(2)effectively broke down the ZnFe_(2)O_(4)structure,and the high O2 atmosphere considerably promoted the sep-aration of Zn from other components in the form of ZnCl_(2).The presence of O2 facilitated the formation of MgFe_(2)O_(4),which stabilized Fe and prevented its chlorination.Furthermore,the excessive use of MgCl_(2)resulted in increased evaporation loss,and high temperatures pro-moted the rapid separation of Zn.Building on these findings,we successfully extracted ZnCl_(2)-enriched volatiles from practical EAF dust through oxygen-assisted chlorination.Under optimized conditions,this method achieved exceptional Zn chlorination percentage of over 97%within a short period,while Fe chlorination remained below 1%.The resulting volatiles contained 85wt%of ZnCl_(2),which can be further processed to produce metallic Zn.The findings offer guidance for the selective recovery of valuable metals,particularly from solid wastes such as EAF dust. 展开更多
关键词 electric arc furnace dust ZINC OXYGEN magnesium chloride CHLORINATION
下载PDF
Appropriate Supply of Ammonium Nitrogen and Ammonium Nitrate Reduces Cadmium Content in Rice Seedlings by Inhibiting Cadmium Uptake and Transport
6
作者 HU Yunchao YAN Tiancai +13 位作者 GAO Zhenyu WANG Tiankang LU Xueli YANG Long SHEN Lan ZHANG Qiang HU Jiang REN Deyong ZHANG Guangheng ZHU Li LI Li ZENG Dali QIAN Qian LI Qing 《Rice science》 SCIE CSCD 2024年第5期587-602,I0062-I0064,共19页
Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain uncle... Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain unclear. This study explored the influence of different N-fertilizer forms(NH_(4)NO_(3), NH_4Cl, and KNO_(3)) and dosages on Cd tolerance and uptake in Cd-stressed N-sensitive and N-insensitive indica rice accessions. The results indicated that the Cd tolerance of N-sensitive indica accessions is more robust than that of N-insensitive ones. Furthermore, the shoot Cd content and Cd translocation rate in both N-sensitive and N-insensitive indica accessions decreased with an appropriate supply of NH_(4)NO_(3) and NH_4Cl, whereas they were comparable or slightly increased with increased KNO_(3). Unfortunately, we did not find significant and regular differences in Cd accumulation or translocation between N-sensitive and N-insensitive rice accessions. Consistent with the reduction of shoot Cd content, the addition of NH_(4)NO_(3) and NH_4Cl also inhibited the instantaneous root Cd^(2+) uptake. The expression changes of Cd transport-related genes under different N forms and dosages suggested that the decreased shoot Cd content, caused by the increased supply of NH_(4)NO_(3) and NH_4Cl, is likely achieved by reducing the transcription of OsNRAMP1 and OsIRT1. In summary, our findings reveal that an appropriate supply of NH_(4)NO_(3) and NH_4Cl could reduce Cd uptake and transport in rice seedlings, suggesting that rational N management could reduce the Cd risk in rice production. 展开更多
关键词 Oryza sativa CADMIUM nitrogen ammonium nitrate ammonium chloride
下载PDF
Effect of combination of ultraviolet radiation and biocide on fungal-induced corrosion of high-strength 7075 aluminum alloy
7
作者 Zheng-yu JIN Chao WANG +1 位作者 Hai-xian LIU Hong-wei LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2787-2799,共13页
The effect of ultraviolet(UV)radiation and biocide benzalkonium chloride(BKC)on fungal-induced corrosion of AA7075 induced by Aspergillus terreus(A.terreus)was deeply studied using analysis of biological activity,surf... The effect of ultraviolet(UV)radiation and biocide benzalkonium chloride(BKC)on fungal-induced corrosion of AA7075 induced by Aspergillus terreus(A.terreus)was deeply studied using analysis of biological activity,surface analysis,and electrochemical measurements.Results demonstrated that the planktonic and sessile spore concentrations decline by more than two orders of magnitude when UV radiation and BKC are combinedly used compared with the control.UV radiation can inhibit the biological activity of A.terreus and influence the stability of passive film of AA7075.Except for direct disinfection,the physical adsorption of BKC on the specimen can effectively inhibit the attachment of A.terreus.The combination of UV radiation and BKC can much more effectively inhibit the corrosion of AA,especially pitting corrosion,due to their synergistic effect.The combined application of UV radiation and BKC can be a good method to effectively inhibit fungal-induced corrosion. 展开更多
关键词 fungal-induced corrosion Aspergillus terreus 7075 aluminum alloy ultraviolet radiation benzalkonium chloride
下载PDF
Effect of Modification Treatment on Chloride Ions Permeability and Microstructure of Recycled Brick-mixed Aggregate Concrete
8
作者 何子明 申爱琴 +2 位作者 WANG Xiaobin WU Jinhua WANG Lusheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期728-737,共10页
The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength... The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength and chloride permeability resistance of recycled aggregate concrete(RAC)before and after modification treatment were tested,and the microstructure of RAC was analyzed by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).The results show that the physical properties of RCBA strengthened by modification treatment are improved,and the compressive strength and chloride permeability resistance of treated RAC are also significantly improved.The modification treatment optimizes the pore size distribution of RAC,which increases the number of gel pores and transition pores,and decreases the number of capillary pores and macro pores.The surface fractal dimension shows a significant correlation with chloride diffusion coefficient,indicating that the variation of chloride permeability of treated RAC is consistent with the microstructure evolution. 展开更多
关键词 recycled aggregate concrete modification treatment compressive strength chloride permeability resistance MICROSTRUCTURE
下载PDF
RNA interference reveals chloride channel 7 gene helps short-term hypersalinity stress resistance in Hong Kong oyster Crassostrea hongkongensis
9
作者 Yeshao PENG Ziao CHEN +5 位作者 Qiong DENG Zhen JIA Lingxin KONG Peng ZHU Youhou XU Zhicai SHE 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第4期1261-1271,共11页
The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region conta... The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region containing 327 bp,and an open reading frame of 2298 bp.ChCLC 7 has 96.8%and 92.1%homology with CLC 7 of Crassostrea gigas and Crassostrea virginica,respectively,and it was clustered with CLC 7 of C.gigas and C.virginica.QRT-PCR showed that ChCLC 7 was expressed in all eight tissues,with the highest in adductor muscle and second in gill.The ChCLC 7 expression pattern in gill was altered significantly under high salinity stress with an overall upward and then downward trend.After RNA interference,the expression of ChCLC 7 and survival rate of oyster under high salinity stress was reduced significantly,and so did the concentration of hemolymph chloride ion in 48-96 h after RNA interference.We believed that ChCLC 7 could play an important role in osmoregulation of C.hongkongensis by regulating Cl^(-)transport.This study provided data for the analysis of molecular mechanism against oyster salinity stress. 展开更多
关键词 Crassostrea hongkongensis chloride channel 7 salinity stress RNA interference
下载PDF
Fabrication of pollution-free coal gangue-based catalytic material utilizing ferrous chloride as activator for efficient peroxymonosulfate activation
10
作者 Zhiming Sun Xinlin Wang +3 位作者 Shaoran Jia Jialin Liang Xiaotian Ning Chunquan Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期103-118,共16页
Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).T... Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).The phase transformation of the prepared materials and gas products during the heating process are thoroughly investigated.It is suggested that ferrous chloride participated in the phase transformation and formed Si-O-Fe bonds.And the main gaseous products are H_(2)O,H_(2),and HCl during the heating process.Besides,the ability of CG-FeCl_(2) to activate peroxymonosulfate(PMS)for catalytic degradation of polycyclic aromatic hydrocarbons(PAHs)and phenol was deeply studied.More than 95%of naphthyl,phenanthrene and phenol were removed under optimizied conditions.In addition,1O_(2),·OH,and SO_(4)·−were involved in the CG-FeCl_(2)/PMS system from the free radical scavenging experiment,where 1O_(2) played a major role during the oxidation process.Furthermore,CG-FeCl_(2)/PMS system exhibited superior stability in a relatively wide pH range and the presence of common anion from related degradation experiments.Overall,the novel CG-FeCl_(2) is an efficient and environmentally friendly catalyst,displaying potential application prospect in the field of PAHs and phenol-contaminated wastewater treatment. 展开更多
关键词 Coal gangue Persulfate activation Advanced oxidation processes Polycyclic aromatic hydrocarbons Phenol Ferrous chloride
下载PDF
Overcoming the Na-ion conductivity bottleneck for the cost-competitive chloride solid electrolytes
11
作者 Lv Hu Hui Li +3 位作者 Fang Chen Yating Liu Jinzhu Wang Cheng Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期1-8,I0001,共9页
Chloride solid electrolytes possess multiple advantages for the construction of safe,energy-dense allsolid-state sodium batteries,but presently the chlorides with sufficiently high cost-competitiveness for commerciali... Chloride solid electrolytes possess multiple advantages for the construction of safe,energy-dense allsolid-state sodium batteries,but presently the chlorides with sufficiently high cost-competitiveness for commercialization almost all exhibit low Na-ion conductivities of around 10^(-5)S cm^(-1)or lower.Here,we report a chloride solid electrolyte,Na_(2.7)ZFCl_(5.3)O_(0.7),which reaches a Na-ion conductivity of 2.29×10^(-4)S cm^(-1)at 25℃without involving overly expensive raw materials such as rare-earth chlorides or Na_(2)S.In addition to the efficient ion transport,Na_(2.7)ZrCl_(5.3)O_(0.7)also shows an excellent deformability surpassing that of the widely studied Na_(3)PS_(4),Na_(3)SbS_(4),and Na_(2)ZrCl_(6)solid electrolytes.The combination of these advantages allows the all-solid-state cell based on Na_(2.7)ZrCl_(5.3)O_(0.7)and NaCrO_(2)to realize stable room-temperature cycling at a much higher specific current than those based on other non-viscoelastic chloride solid electrolytes in literature(120 mA g^(-1)vs.12-55 mA g^(-1));after 100 cycles at such a high rate,the Na_(2.7)ZFCl_(5.3)O_(0.7)-based cell can still deliver a discharge capacity of 80 mAh g^(-1)at25℃. 展开更多
关键词 All-solid-state sodium batteries Ionic conductivities Solid electrolytes Chlorides High voltage stability
下载PDF
Experimental investigation of the inhibition of deep-sea mining sediment plumes by polyaluminum chloride
12
作者 Fengpeng Zhang Xuguang Chen +3 位作者 Jiakang Wei Yangyang Zhang Weikun Xu Hao Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期91-104,共14页
Deep-sea sediment disturbance may occur when collecting polymetallic nodules,resulting in the creation of plumes that could have a negative impact on the ecological environment.This study aims to investigate the poten... Deep-sea sediment disturbance may occur when collecting polymetallic nodules,resulting in the creation of plumes that could have a negative impact on the ecological environment.This study aims to investigate the potential solution of using polyaluminum chloride(PAC)in the water jet.The effects of PAC are examined through a self-designed simulation system for deep-sea polymetallic nodule collection and sediment samples from a potential deep-sea mining area.The experimental results showed that the optimal PAC dose was found to be 0.75 g/L.Compared with the test conditions without the addition of PAC,the presence of PAC leads to a reduction in volume,lower characteristic turbidity,smaller diffusion velocity,and shorter settling time of the plume.This indicates that PAC inhibits the entire development process of the plume.The addition of PAC leads to the flocculation of mm-sized particles,resulting in the formation of cm-sized flocs.The flocculation of particles decreases the rate of erosion on the seabed by around 30%.This reduction in erosion helps to decrease the formation of plumes.Additionally,when the size of suspended particles increases,it reduces the scale at which they diffuse.Furthermore,the settling velocity of flocs(around 10^(-2) m/s)is much higher that of compared to sediment particles(around 10^(-5) m/s),which effectively reduces the amount of time the plume remains in suspension. 展开更多
关键词 Deep-sea mining Deep-sea polymetallic nodules Sediment plume Polyaluminum chloride Jet impact Particle flocculation
下载PDF
Influence of Recycled Concrete Fine Powder on Durability of Cement Mortar
13
作者 Yadong Bian Xuan Qiu +2 位作者 Jihui Zhao Zhong Li Jiana Ouyang 《Fluid Dynamics & Materials Processing》 EI 2024年第1期45-58,共14页
In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion ero... In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion erosion resistance.The results indicate that the influence of RFP on these three aspects is different.The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10%RFP decreased by 13.3%and 28.19%.With a further increase in the RFP content,interconnected pores formed between the RFP particles,leading to an acceleration of the penetration rate of CO_(2)and Cl^(−).When the RFP content was less than 50%,the corrosion resistance coefficient of the compressive strength of the mortar was 0.84-1.05 after 90 days of sulfate attack.But the expansion and cracking of the mortar was effectively alleviated due to decrease of the gypsum production.Scanning electron microscope(SEM)analysis has confirmed that 10%RFP contributes to the formation of a dense microstructure in the cement mortar. 展开更多
关键词 Recycled concrete fine powder cement mortar CARBONIZATION SULFATE chloride ion DURABILITY
下载PDF
In situ generation of oxyanions-decorated cobalt(nickel)oxyhydroxide catalyst with high corrosion resistance for stable and efficient seawater oxidation
14
作者 Fengting Luo Pei Yu +2 位作者 Jueting Xiang Junjie Jiang Shijian Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期508-516,共9页
The development of efficient and robust anode materials for stable alkaline seawater electrolysis is severely limited by chlorine evolution reaction and chloride corrosion.Here,the sulfur-doped cobalt-nickel bimetalli... The development of efficient and robust anode materials for stable alkaline seawater electrolysis is severely limited by chlorine evolution reaction and chloride corrosion.Here,the sulfur-doped cobalt-nickel bimetallic phosphides(CoNiPS)are specifically designed as a pre-catalyst for navigating a surface reconstruction to fabricate the anions(PO^(3-)_(4) and SO^(2-)_(4))-decorated Co(Ni)OOH catalyst(R-CoNiPS)with exceptional durability and high activity for stable alkaline seawater oxidation(ASO).Various experiment techniques together with theoretical simulations both demonstrate that the in situ-generated PO^(3-)_(4) and SO^(2-)_(4) anions on catalyst surface can improve the oxygen evolution reaction(OER)activity,regulating and stabilizing the catalytic active species Co(Ni)OOH,as well as make a critical role in inhibiting the adsorp-tion of chloride ions and extending the service life of electrode.Therefore,this R-CoNiPS electrode exhi-bits superb OER activity toward AsO and stands out among the non-precious ASO electrocatalysts reported recently,requiring low overpotentials of 420 and 440 mV to attain large current densities of 500 and 1000 mA cm^(-2) in an alkaline natural seawater electrolyte,respectively.Particularly,the catalyst displays a negligible chloride corrosion at room temperature during ASO operation(>200 h)at 500 mA cm^(-2).This work opens up a new viewpoint for designing high-activity and durable electrocata-lystsforseawaterelectrolysis. 展开更多
关键词 Seawater electrolysis Anions Oxygen evolution reaction Chloride corrosion
下载PDF
Inhibition of proliferation,migration,and invasiveness of bladder cancer cells through SAPCD2 knockdown
15
作者 CHONG SHEN JIAJUN YAN +3 位作者 YU REN ZHIRONG ZHU XIAOLONG ZHANG SHUIXIANG TAO 《BIOCELL》 SCIE 2024年第1期97-109,共13页
Introduction:Bladder cancer(BC)has a high incidence and mortality rate worldwide.Suppressor anaphasepromoting complex domain containing 2(SAPCDC2)is over-expressed in a variety of tumors.Objectives:This study investig... Introduction:Bladder cancer(BC)has a high incidence and mortality rate worldwide.Suppressor anaphasepromoting complex domain containing 2(SAPCDC2)is over-expressed in a variety of tumors.Objectives:This study investigated the effects of SAPCD2 knockdown on BC cells.Methods:T24 and UMUC3 cell models and the xenografted BC tumor model with SAPCD2 knockdown were established to observe the malignant phenotype of BC cells by cell counting kit-8 assay,colony formation test,wound healing,and Transwell assay,mRNA and proteins expressions were measured with quantitative real-time polymerase chain reaction,western blotting,and tissue immunohistochemistry.Lithium chloride agonist on the Wnt/β-catenin pathway was used to clarify the molecular mechanism of SAPCD2 knockdown.Results:SAPCD2 expression was significantly higher in BC cell lines than in SVHUC-1 cells.SAPCD2 knockdown inhibited viability and cloning,hindered the G0/G1 phase of the cell cycle in UMUC3 and T24 cells,and decreased the migration and invasiveness of BC cells.SAPCD2 knockdown inhibited expression levels of cyclin D1,cyclin B1,N-cadherin,vimentin,Snail,β-catenin,c-Myc,and cyclin-dependent kinase 4,while the P21 and E-cadherin were raised by SAPCD2 knockdown.Furthermore,lithium chloride reversed the effects of SAPCD2 knockdown on the expression levels of the above proteins in UMUC3 and T24 cells.In vivo,SAPCD2 knockdown inhibited the volume,weight,and expression of Ki-67 andβ-catenin in tumors and increased the E-cadherin expression.Conclusion:SAPCD2 knockdown inhibits the malignant phenotype of BC via a pathway involvingβ-catenin. 展开更多
关键词 Bladder cancer SAPCD2 Β-CATENIN C-MYC CDK4 Lithium chloride
下载PDF
Influence of Polyaluminum Chloride Residue on the Strength andMicrostructure of Cement-Based Materials
16
作者 Ping Xu Zhiwei Zhang +2 位作者 Zhenguo Hou Mankui Zheng Jin Tong 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1299-1312,共14页
In this paper,cement and dechlorinated Polyaluminum Chloride Residue(PACR)have been used to prepare a net slurry and mortar specimens.Two hydration activity indicators have been used to quantitatively analyze the dech... In this paper,cement and dechlorinated Polyaluminum Chloride Residue(PACR)have been used to prepare a net slurry and mortar specimens.Two hydration activity indicators have been used to quantitatively analyze the dechlorinated PACR hydration activity.In particular,the effect of dechlorinated PACR content on the compressive strength of mortar has been assessed by means of compressive strength tests.Moreover,X-ray diffraction(XRD)and scanning electron microscopy(SEM)have been employed to observe the microstructure of the considered hydration products.The following results have been obtained.The 28th day activity index of the dechlorinated PACR is 75%,and therefore it meets the criterion for the use of active admixture.The increase in the content of the dechlorinated PACR tends to reduce the compressive strength of mortar specimens,however,it is beneficial to its later strength growth.When the content is not greater than 10%,the strength remains unchanged,otherwise,it decreases.The PACR does not form a new crystalline phase in the cement slurry,and the dechlorinated PACR remains active until the age of the 28th day.The inclusion of the PACR mainly deteriorates the early strength of the cement slurry,but it promotes the production of hydration products in the cement slurry after the 7th day. 展开更多
关键词 Dechlorinated polyaluminum chloride residue activity index STRENGTH MICROSTRUCTURE hydration product
下载PDF
Oxidative Desulfurization of Fuel Oil with H_(3)PO_(4)-based Deep Eutectic Solvents
17
作者 Li Xiuping Zhang Jiayin +1 位作者 Hou Liangpei Zhao Rongxiang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期178-186,共9页
A series of Lewis-acid deep eutectic solvents (DESs) were synthesized by stirring phosphoric acid and zincchloride as raw materials at 80℃ to form H_(3)PO_(4)/nZnCl_(2) (n = 0.1, 0.25, 0.5, 0.75, 1). The DESs were ch... A series of Lewis-acid deep eutectic solvents (DESs) were synthesized by stirring phosphoric acid and zincchloride as raw materials at 80℃ to form H_(3)PO_(4)/nZnCl_(2) (n = 0.1, 0.25, 0.5, 0.75, 1). The DESs were characterized byFourier transform infrared spectrophotometry (FT-IR), thermogravimetry/differential thermogravimetry (TG/DTG), andelectron spray ionization mass spectrometry (ESI-MS). The DESs were used as both extractants and catalysts to removedibenzothiophene from fuels via oxidative desulfurization (ODS). Experiments were performed to investigated the influenceof factors such as composition of DES, temperature, oxidant dosage (molar ratio of O:S), DES dosage (volume ratio ofDES:oil), and number of cycles on desulfurization rate. The results indicated that the removal rate of dibenzothiophene (DBT)was affected by the Lewis acidic DESs, with that of H_(3)PO_(4)/0.25∙ZnCl_(2) reaching 96.4% under optimal conditions (Voil=5 mL,VDES=1 mL, an oxidant dosage of 6, T=50 ℃). After six cycles, the desulfurization rate of H_(3)PO_(4)/0.25∙ZnCl_(2) remained above94.1%. The apparent activation energy of dibenzothiophene (DBT) removal reaction was determined by a pseudo-first orderkinetic equation according to the Arrhenius equation to be 32.34 kJ/mol, as estimated. A reaction mechanism is proposedbased on the experimental data and characterization results. 展开更多
关键词 deep eutectic solvents phosphoric acid zinc chloride oxidative desulfurization
下载PDF
Exogenous application of bio-stimulants and growth retardants improve nutrient absorption and fiber quality in upland cotton
18
作者 Al-Khayri Jameel M. Arif Muhammad +6 位作者 Kareem Shadia Hama Salih Anwar Adeel Dehghanisanij Hossein Emami Somayeh Yasmeen Azra Aftab Komal Negm Mohamed 《Journal of Cotton Research》 CAS 2024年第2期137-147,共11页
Background Natural and synthetic plant growth regulators are essential for plant health,likewise these regulators also play a role in increasing organic production productivity and improving quality and yield stabilit... Background Natural and synthetic plant growth regulators are essential for plant health,likewise these regulators also play a role in increasing organic production productivity and improving quality and yield stability.In the present study,we have evaluated the effects of foliar applied plant growth regulators,i.e.,moringa leaf extract(MLE)and mepiquat chloride(MC)alone and in combination MC and MLE on the conventional cotton cultivar(CIM 573)and transgenic one(CIM 598).The growth regulators were applied at the start of bloom,45 and 90 days after blooming.Results The application of MC and MLE at 90 days after blooming significantly improved the relative growth rate,net assimilation rate,the number of bolls per plant,and seed cotton yield.Likewise,the combined application of MLE and MC at 90 days after blooming significantly boosted the nitrogen uptake in locules,as well as the phosphorus and potassium uptake in the leaves of both cotton cultivars.The application of MLE alone has considerably improved the nitrogen uptake in leaves,and phosphorus and potassium contents in locules of Bt and conventional cotton cultivars.Similarly,Bt cotton treated with MLE at 90 days after blooming produced significantly higher ginning out turn and oil contents.Treatment in combination(MLE+MC)at 90 days after blooming produced considerably higher micronaire value,fiber strength,and staple length in conventional cultivar.Conclusion The natural growth enhancer,MLE is a rich source of minerals and zeatin,improving the nutrient absorption and quality of cotton fiber in both conventional and Bt cotton cultivars. 展开更多
关键词 Bio-stimulant COTTON Fiber quality Mepiquat chloride Moringa leaf extract Potassium accumulation Oil contents
下载PDF
Performance Analysis of Plant Shells/PVC Composites under Corrosion and Aging Conditions
19
作者 Haoping Yao Xinyu Zhong Chunxia He 《Journal of Renewable Materials》 EI CAS 2024年第5期993-1006,共14页
To make full use of plant shellfibers(rice husk,walnut shell,chestnut shell),three kinds of wood-plastic com-posites of plant shellfibers and polyvinyl chloride(PVC)were prepared.X-ray diffraction analysis was carried o... To make full use of plant shellfibers(rice husk,walnut shell,chestnut shell),three kinds of wood-plastic com-posites of plant shellfibers and polyvinyl chloride(PVC)were prepared.X-ray diffraction analysis was carried out on three kinds of plant shellfibers to test their crystallinity.The aging process of the composites was conducted under 2 different conditions.One was artificial seawater immersion and xenon lamp irradiation,and the other one was deionized water spray and xenon lamp irradiation.The mechanical properties(tensile strength,flexural strength,impact strength),changes in color,water absorption,Fourier transform infrared spectroscopy(FTIR),and microstructures of the composites before and after the two aging experiments were analyzed.The results showed that the chestnut shell had the highest crystallinity,which was 42%.The chestnut shell/PVC composites had the strongest interface bonding,the least internal defects,and the best general mechanical properties among the three composites.Its tensile strength,bending strength and impact strength were 23.81 MPa,34.12 MPa,and 4.32 KJ·m^(-2),respectively.Comparing the two aging conditions,artificial seawater immersion and xenon lamp irradiation destroyed the quality of the combination of plant shellfibers and PVC,making the internal defects of the composites increase.This made the water absorption ability and changes in the color of the composites more obvious and led to a great decrease in the mechanical properties.The general mechanical properties of the chestnut shell/PVC composites were the best,but their water absorption ability changed more obviously. 展开更多
关键词 Plant shellfibers polyvinyl chloride wood-plastic composites artificial seawater immersion deionized water spray xenon lamp irradiation
下载PDF
Synthesis and Characterization of Phenyl Camellia oleifera Seed Oil Ester Plasticizing PVC
20
作者 Wenqing Xiao Yuhang Liu +2 位作者 Yuxin He Qiaoguang Li Yongquan Li 《Journal of Renewable Materials》 EI CAS 2024年第3期615-628,共14页
Plasticizers are essential additives in the processing of polyvinyl chloride(PVC),with phthalate plasticizers being widely used.However,these conventional plasticizers have been shown to be harmful to human health and... Plasticizers are essential additives in the processing of polyvinyl chloride(PVC),with phthalate plasticizers being widely used.However,these conventional plasticizers have been shown to be harmful to human health and environmentally unfriendly,necessitating the exploration of eco-friendly bio-based alternatives.In this study,Camellia oleifera seed oil,a specialty resource in China,was utilized as a raw material and reacted with 4,4′-Methylenebis(N,N-diglycidylaniline)(AG-80)to synthesize Phenyl Camellia seed Oil Ester(PCSOE).PCSOE was employed as a plasticizer to prepare modified PVC films with varying concentrations,with the conventional plasticizer dioctyl phthalate(DOP)serving as a control.Experimental results demonstrate that PSCOE-plasticized PVC films exhibit enhanced hydrophilicity,tensile strength,and thermal stability compared to DOP-modified PVC films.The contact angle of PSCOE-plasticized PVC films ranges from 66.26°to 78.48°,which is generally lower than the contact angle of DOP-modified PVC films at 78.40°,indicating improved hydrophilicity due to the modification with PCSOE.The tensile strength of PSCOE-plasticized PVC films ranges from 17.73 to 20.17 MPa,all surpassing the value of 16.41 MPa for DOP-modified PVC films.Moreover,the temperatures corresponding to 5%,10%,and 50%weight loss for PVC samples modified with PCSOE are higher than those for DOP.Hence,PCSOE presents a viable alternative to DOP as a plasticizer for PVC materials. 展开更多
关键词 Polyvinyl chloride(PVC) Camellia oleifera seed oil 4 4′-Methylenebis(N N-diglycidylaniline) bio-based plasticizer
下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部