We use the extended gate field effect transistor (EGFET)as the structure of the chlorine ion sensor,and the chlorine ion ionophores (ETH9033 and TDDMAC1)are incorporated into solvent polymeric membrane (PVC/DOS),then ...We use the extended gate field effect transistor (EGFET)as the structure of the chlorine ion sensor,and the chlorine ion ionophores (ETH9033 and TDDMAC1)are incorporated into solvent polymeric membrane (PVC/DOS),then the chlorine ion selective membrane is formed on the sensing window,and the fabrication of the EGFET chlorine ion sensing device is completed.The surface potential on the sensing membrane of the EGFET chlorine ion sensing device will be changed in the different chlorine ion concentration solutions,then changes further gate voltage and drain current to detect chlorine ion concentration.We will study non-ideal effects such as temperature,hysteresis and drift effects for the EGFET chlorine ion sensing device in this paper,these researches will help us to improve the sensing characteristics of the EGFET chlorine ion sensing device.展开更多
Dry machining has become a key issue to significantly reduce the wastes of used lubricants and cleaning agents and to improve the environmental consciousness for medical and food applications of special tooling. Since...Dry machining has become a key issue to significantly reduce the wastes of used lubricants and cleaning agents and to improve the environmental consciousness for medical and food applications of special tooling. Since the tools and metallic works are in direct contact in dry, severe adhesive wear and oxidation are thought to occur even at the presence of hard protective coatings. Self-lubrication mechanism with use of lubricous oxide films is found to be effective for dry machining. Through the chlorine ion implantation to tools, titanium base oxides are in-situ formed on the tool surface. This oxide deforms elasto-plastically so that both friction coefficient and wear volume are reduced even in the high-speed cutting.展开更多
The ion chromatography combined solid phase extraction (SPE) method was developed for the analysis of low concentration haloacetic acids (HAAs), a class of disinfection by-products formed from chlorination of hosp...The ion chromatography combined solid phase extraction (SPE) method was developed for the analysis of low concentration haloacetic acids (HAAs), a class of disinfection by-products formed from chlorination of hospital wastewater. The monitored HAAs included monochloroacetic acid, monobromoacetic acid, dichloroacetic acid, dibromoacetic acid and trichloroacetic acid. The method employed a sodium hydroxide eluent at a flow rate of 0.8 ml/min, electrolytically generated gradients, and suppressed conductivity detection. To analyze the HAAs in real hospital wastewater samples, C18 pretreatment cartridge was utilized to reduce samples' turbidity. Preconcentration with SPE and matrix elimination with treatment cartridges were investigated and found to be able to obtain acceptable detection limits. Linearity, repeatability and detection limits of the above method were evaluated. The detection limits of monobromoacetic acid and dibromoacetic acid were 2.61 μg/L and 1.30 μg/L, respectively, and the other three acids are ranging from 0.48 to 0.82μg/L under 25-fold preconcentration. When the above optimization procedure was applied to three hospital wastewater samples with different treatment processes in Tianjin, it was found that the dichloroacetic acid was the major compound, and the growth ratios of the HAAs after disinfection by sodium hypochlorite were 91.28%, 63.61% and 79.50%, respectively.展开更多
Chemical oxygen demand (COD) is an important index to evaluate the water pollution level. The method of potassium dichromate is used as a national standard for determination of COD in China. Chloride is the most com...Chemical oxygen demand (COD) is an important index to evaluate the water pollution level. The method of potassium dichromate is used as a national standard for determination of COD in China. Chloride is the most common interference in COD determination process. In order to solve the problem, this paper analyzes the effect of chlorine ion on the determination ofCOD in principle. And then a kind of measurement system is designed based on the structure of nanometer glass probe, which achieves rapid measurement of the concentration of chloride ions within a larger range and provides a new technical solution for improving the accuracy of the COD measurement. Alter theoretical studies and experimental verification on the distractions in the process of ion current detection, the effects of probe diameter and bias voltage on the system measuring range and sensitivity are discussed.展开更多
The photoelectrocatalytic activity of TiO2 film electrodes in the degradation of nitrite ion was greatly enhanced in the presence of chlorine ion. The influences of NaCl concentration and initial pH value on the degra...The photoelectrocatalytic activity of TiO2 film electrodes in the degradation of nitrite ion was greatly enhanced in the presence of chlorine ion. The influences of NaCl concentration and initial pH value on the degradation rate of NO 2-and active chlorine production were studied. The results show that the decay rate of NO -2 and the accumulation rate of active chlorine increase with increasing NaCl concentration. At pH<8, both the decay of NO 2- and active chlorine formation rates are enhanced with increasing NaCl concentration, while at pH>10, they are suppressed. In addition, contrast to conventionally accepted view, in which an advantage of anatase over the rutile modification of TiO2 is in terms of photoactivity, it is found that a thermal oxidation rutile TiO2 electrode is more suitable for both photogenerating active chlorine and degrading NO 2- in the presence of Cl-. The correlative mechanism was also discussed in detail. Specific adsorption of Cl- on the electrode causes its energy band edges to move towards positive value and also lower the photocurrent, thus less OH· radicals are produced. However, more active species of Cl· that have longer lifetime are available to take part in the oxidation of NO -2, thus improving its degradation rate.展开更多
When water-ice grows into salt solutions ion species are excluded by the ice differentially due to non-identical solubility in the ice lattice. This causes an electrical potential across the interface during the ice g...When water-ice grows into salt solutions ion species are excluded by the ice differentially due to non-identical solubility in the ice lattice. This causes an electrical potential across the interface during the ice growth process, initially named the Workman Reynolds Freezing Potential, and may be one of the causes for lightning. However, by measuring the voltage between the ice and water, we have found that when tetrahydrofuran hydrate crystals are grown into salt solutions all ion species are excluded equally and the potential does not manifest. When considered together, this marked difference in ion exclusion scenarios may have ramifications for hydrate exploration because of the chlorine anomaly, which is often used as an indicator of the presence of hydrate reserves.展开更多
文摘We use the extended gate field effect transistor (EGFET)as the structure of the chlorine ion sensor,and the chlorine ion ionophores (ETH9033 and TDDMAC1)are incorporated into solvent polymeric membrane (PVC/DOS),then the chlorine ion selective membrane is formed on the sensing window,and the fabrication of the EGFET chlorine ion sensing device is completed.The surface potential on the sensing membrane of the EGFET chlorine ion sensing device will be changed in the different chlorine ion concentration solutions,then changes further gate voltage and drain current to detect chlorine ion concentration.We will study non-ideal effects such as temperature,hysteresis and drift effects for the EGFET chlorine ion sensing device in this paper,these researches will help us to improve the sensing characteristics of the EGFET chlorine ion sensing device.
基金financially supported in part by the national project on the barrier-free processing and environmentally benign manufacturing from MEXT
文摘Dry machining has become a key issue to significantly reduce the wastes of used lubricants and cleaning agents and to improve the environmental consciousness for medical and food applications of special tooling. Since the tools and metallic works are in direct contact in dry, severe adhesive wear and oxidation are thought to occur even at the presence of hard protective coatings. Self-lubrication mechanism with use of lubricous oxide films is found to be effective for dry machining. Through the chlorine ion implantation to tools, titanium base oxides are in-situ formed on the tool surface. This oxide deforms elasto-plastically so that both friction coefficient and wear volume are reduced even in the high-speed cutting.
基金Project supported by the Hi-Tech Research and Development Program(863) of China (No. 2003AA601130).
文摘The ion chromatography combined solid phase extraction (SPE) method was developed for the analysis of low concentration haloacetic acids (HAAs), a class of disinfection by-products formed from chlorination of hospital wastewater. The monitored HAAs included monochloroacetic acid, monobromoacetic acid, dichloroacetic acid, dibromoacetic acid and trichloroacetic acid. The method employed a sodium hydroxide eluent at a flow rate of 0.8 ml/min, electrolytically generated gradients, and suppressed conductivity detection. To analyze the HAAs in real hospital wastewater samples, C18 pretreatment cartridge was utilized to reduce samples' turbidity. Preconcentration with SPE and matrix elimination with treatment cartridges were investigated and found to be able to obtain acceptable detection limits. Linearity, repeatability and detection limits of the above method were evaluated. The detection limits of monobromoacetic acid and dibromoacetic acid were 2.61 μg/L and 1.30 μg/L, respectively, and the other three acids are ranging from 0.48 to 0.82μg/L under 25-fold preconcentration. When the above optimization procedure was applied to three hospital wastewater samples with different treatment processes in Tianjin, it was found that the dichloroacetic acid was the major compound, and the growth ratios of the HAAs after disinfection by sodium hypochlorite were 91.28%, 63.61% and 79.50%, respectively.
基金National Natural Science Foundation of China(No.61072013)
文摘Chemical oxygen demand (COD) is an important index to evaluate the water pollution level. The method of potassium dichromate is used as a national standard for determination of COD in China. Chloride is the most common interference in COD determination process. In order to solve the problem, this paper analyzes the effect of chlorine ion on the determination ofCOD in principle. And then a kind of measurement system is designed based on the structure of nanometer glass probe, which achieves rapid measurement of the concentration of chloride ions within a larger range and provides a new technical solution for improving the accuracy of the COD measurement. Alter theoretical studies and experimental verification on the distractions in the process of ion current detection, the effects of probe diameter and bias voltage on the system measuring range and sensitivity are discussed.
基金Projects(20373062 20107006) supposed by the National Natural Science Foundation of China
文摘The photoelectrocatalytic activity of TiO2 film electrodes in the degradation of nitrite ion was greatly enhanced in the presence of chlorine ion. The influences of NaCl concentration and initial pH value on the degradation rate of NO 2-and active chlorine production were studied. The results show that the decay rate of NO -2 and the accumulation rate of active chlorine increase with increasing NaCl concentration. At pH<8, both the decay of NO 2- and active chlorine formation rates are enhanced with increasing NaCl concentration, while at pH>10, they are suppressed. In addition, contrast to conventionally accepted view, in which an advantage of anatase over the rutile modification of TiO2 is in terms of photoactivity, it is found that a thermal oxidation rutile TiO2 electrode is more suitable for both photogenerating active chlorine and degrading NO 2- in the presence of Cl-. The correlative mechanism was also discussed in detail. Specific adsorption of Cl- on the electrode causes its energy band edges to move towards positive value and also lower the photocurrent, thus less OH· radicals are produced. However, more active species of Cl· that have longer lifetime are available to take part in the oxidation of NO -2, thus improving its degradation rate.
文摘When water-ice grows into salt solutions ion species are excluded by the ice differentially due to non-identical solubility in the ice lattice. This causes an electrical potential across the interface during the ice growth process, initially named the Workman Reynolds Freezing Potential, and may be one of the causes for lightning. However, by measuring the voltage between the ice and water, we have found that when tetrahydrofuran hydrate crystals are grown into salt solutions all ion species are excluded equally and the potential does not manifest. When considered together, this marked difference in ion exclusion scenarios may have ramifications for hydrate exploration because of the chlorine anomaly, which is often used as an indicator of the presence of hydrate reserves.