The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were perform...The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were performed at room temperature for frequencies 100 Hz,1 kHz and 10 kHz.It is shown that there is a linear relationship between the capacitance and the concentration of chlorine gas.Influences of the measurement frequency and film thickness of silicate on the sensitivity of the sensor to C12 gas were discussed.And organically modified N,N-diethylaminopropyl-trimethoxysilane (APMS) had a much higher sensitivity.展开更多
PANI/ZnPcCl_(16)(polyaniline doped with sulfosalicylic acid/hexadecachloro zinc phthalocyanine) powders were vacuum co-deposited onto Si substrates,where Pt interdigitated electrodes were made by micromachining.Th...PANI/ZnPcCl_(16)(polyaniline doped with sulfosalicylic acid/hexadecachloro zinc phthalocyanine) powders were vacuum co-deposited onto Si substrates,where Pt interdigitated electrodes were made by micromachining.The PANI/ZnPcCl_(16) films were characterized and analyzed by SEM,and the influencing factors on its intrinsic performance were analyzed and sensitivities of the sensors were investigated by exposure to chlorine(Cl_2) gas.The results showed that powders prepared with a stoichiometric ratio of(ZnPcCl_(16))_(0.6)(PANI)_(0.4) had a preferential sensitivity to Cl_2 gas, superior to those prepared otherwise;the optimal vacuum co-deposition conditions for the films are a substrate temperature of 160℃,an evaporation temperature of 425℃and a film thickness of 75 nm;elevating the operation temperature (above 100℃) or increasing the gas concentration(over 100 ppm) would improve the response characteristics,but there should be upper levels for each.Finally,the gas sensing mechanism of PANI/ZnPcCl_(16) films was also discussed.展开更多
The perovskite-structure CdSnO_(3) was obtained by calcinating CdSnO_(3)·3H_(2)O precursor at 550℃,which was synthesized by hydrothermal process at 170℃for 16 h.The phase and microstructure of the obtained CdSn...The perovskite-structure CdSnO_(3) was obtained by calcinating CdSnO_(3)·3H_(2)O precursor at 550℃,which was synthesized by hydrothermal process at 170℃for 16 h.The phase and microstructure of the obtained CdSnO_(3) powders were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM)and transmission electron microscopy(TEM).The CdSnO_(3) powders exhibit uniformly cubic structure with side length of about 100 nm.The effects of working temperature and concentration of detected gas on the gas response were studied.The selectivity of chlorine gas against other gases and response-recovery time of the sensor were also investigated.The results reveal that the CdSnO_(3) gas sensor has enhanced sensing properties to 1-10 ppm chlorine gas at room temperature;the value of gas response can reach 1338.9 to 5 ppm chlorine gas.Moreover,the sensor shows good selectivity and quick response behavior(23 s)to chlorine gas,indicating its application in detecting chlorine gas at room temperature in the future.展开更多
Aiming at detecting Cl2 gas, this study was made on how to make In-based compound semiconductor oxide gas sensor. The micro-property and sensitivity of In-based gas sensing material were analyzed and its gas sensitive...Aiming at detecting Cl2 gas, this study was made on how to make In-based compound semiconductor oxide gas sensor. The micro-property and sensitivity of In-based gas sensing material were analyzed and its gas sensitive mechanism was also discussed. Adopting constant temperature chemical coprecipitation, the compound oxides such as In-Nb, In-Cd and In-Mg were synthesized, respectively. The products were sintered at 600 ℃ and characterized by the Scanning Electron Microscope (SEM), showing the grain size almost about 50-60 nm. The test results show that the sensitivities of In-Nb, In-Cd and In-Mg materials under the concentration of 50 × 10^-6 in Cl2 gas are above 100 times, 4 times and 10 times, respectively. The response time of In-Nb, In-Cd and In-Mg materials is about 30, 60 and 30 s, and the recovery time less than 2, 10 and 2 min, respectively. Among them, the In-Nb material was found to have a relatively high conductivity and ideal sensitivity to Cl2 gas, which showed rather good selectivity and stability, and could detect the minimum concentration of 0.5 × 10^-6 with the sensitivity of 2.2, and the upper limit concentration of 500 × 10^-6. The power loss of the device is around 220 mW under the heating voltage of 3 V.展开更多
文摘The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were performed at room temperature for frequencies 100 Hz,1 kHz and 10 kHz.It is shown that there is a linear relationship between the capacitance and the concentration of chlorine gas.Influences of the measurement frequency and film thickness of silicate on the sensitivity of the sensor to C12 gas were discussed.And organically modified N,N-diethylaminopropyl-trimethoxysilane (APMS) had a much higher sensitivity.
基金Project supported by the National Natural Science Foundation of China(Nos.60772019,50675184)the National Hi-Tech Research and Development Program of China(No.2007AA04Z308)the National Science Foundation for Post-doctoral Scientists of China(No. 20080440839).
文摘PANI/ZnPcCl_(16)(polyaniline doped with sulfosalicylic acid/hexadecachloro zinc phthalocyanine) powders were vacuum co-deposited onto Si substrates,where Pt interdigitated electrodes were made by micromachining.The PANI/ZnPcCl_(16) films were characterized and analyzed by SEM,and the influencing factors on its intrinsic performance were analyzed and sensitivities of the sensors were investigated by exposure to chlorine(Cl_2) gas.The results showed that powders prepared with a stoichiometric ratio of(ZnPcCl_(16))_(0.6)(PANI)_(0.4) had a preferential sensitivity to Cl_2 gas, superior to those prepared otherwise;the optimal vacuum co-deposition conditions for the films are a substrate temperature of 160℃,an evaporation temperature of 425℃and a film thickness of 75 nm;elevating the operation temperature (above 100℃) or increasing the gas concentration(over 100 ppm) would improve the response characteristics,but there should be upper levels for each.Finally,the gas sensing mechanism of PANI/ZnPcCl_(16) films was also discussed.
基金This project is supported by the Natural Science Foundation of Henan Provincial Education Department,China(Grant Nos.2008B43001 and 2010B150017).
文摘The perovskite-structure CdSnO_(3) was obtained by calcinating CdSnO_(3)·3H_(2)O precursor at 550℃,which was synthesized by hydrothermal process at 170℃for 16 h.The phase and microstructure of the obtained CdSnO_(3) powders were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM)and transmission electron microscopy(TEM).The CdSnO_(3) powders exhibit uniformly cubic structure with side length of about 100 nm.The effects of working temperature and concentration of detected gas on the gas response were studied.The selectivity of chlorine gas against other gases and response-recovery time of the sensor were also investigated.The results reveal that the CdSnO_(3) gas sensor has enhanced sensing properties to 1-10 ppm chlorine gas at room temperature;the value of gas response can reach 1338.9 to 5 ppm chlorine gas.Moreover,the sensor shows good selectivity and quick response behavior(23 s)to chlorine gas,indicating its application in detecting chlorine gas at room temperature in the future.
基金supported by the National Natural Science Foundation of China (No. 60772019)the National High Technology Research andDevelopment Program of China (No. 2006AA040101-05)the National Science Foundation for Post-doctoral Scientists of China (No.20080440839).
文摘Aiming at detecting Cl2 gas, this study was made on how to make In-based compound semiconductor oxide gas sensor. The micro-property and sensitivity of In-based gas sensing material were analyzed and its gas sensitive mechanism was also discussed. Adopting constant temperature chemical coprecipitation, the compound oxides such as In-Nb, In-Cd and In-Mg were synthesized, respectively. The products were sintered at 600 ℃ and characterized by the Scanning Electron Microscope (SEM), showing the grain size almost about 50-60 nm. The test results show that the sensitivities of In-Nb, In-Cd and In-Mg materials under the concentration of 50 × 10^-6 in Cl2 gas are above 100 times, 4 times and 10 times, respectively. The response time of In-Nb, In-Cd and In-Mg materials is about 30, 60 and 30 s, and the recovery time less than 2, 10 and 2 min, respectively. Among them, the In-Nb material was found to have a relatively high conductivity and ideal sensitivity to Cl2 gas, which showed rather good selectivity and stability, and could detect the minimum concentration of 0.5 × 10^-6 with the sensitivity of 2.2, and the upper limit concentration of 500 × 10^-6. The power loss of the device is around 220 mW under the heating voltage of 3 V.