Comparative pilot tests were conducted to investigate the coagulation-aid effects of the combined preoxidation by potassium permanganate composites (PPC) with chlorine and preozonation. And the synergistie mechanism...Comparative pilot tests were conducted to investigate the coagulation-aid effects of the combined preoxidation by potassium permanganate composites (PPC) with chlorine and preozonation. And the synergistie mechanism of combined preoxidation was discussed. Results showed that 1.0 mg/L PPC with 2. 0 mg/L chlorine could further improve the quality of treated water, as indicated by residual turbidity, TOC and algae. The enhanced efficiency could be explained by the synergistic effect of the preoxidants themselves, or the effect of chlorine and the intermediate such as hydrous manganese dioxide, which was generated by potassium permanga- nate, the main ingredient of PPC.展开更多
The photocatalytic reduction of aqueous Cr(VI)to Cr(III)was preliminarily studied using porousg‐C3N4as a photocatalyst under acidic conditions.The observed synergistic photocatalytic effect ofporous g‐C3N4on a Cr(VI...The photocatalytic reduction of aqueous Cr(VI)to Cr(III)was preliminarily studied using porousg‐C3N4as a photocatalyst under acidic conditions.The observed synergistic photocatalytic effect ofporous g‐C3N4on a Cr(VI)/4‐chlorophenol(4‐CP)composite pollution system was further studiedunder different pH conditions.Compared with single‐component photocatalytic systems for Cr(VI)reduction or4‐CP degradation,the Cr(VI)reduction efficiency and4‐CP degradation efficiency weresimultaneously improved in the Cr(VI)/4‐CP composite pollution system.The synergistic photocatalyticeffect in the Cr(VI)/4‐CP composite pollution system can be attributed to the acceleratedredox reaction between dichromate and4‐CP by electron transfer with porous g‐C3N4.展开更多
The variations in the isotopic compositions of chlorine in evaporation controlled saline lake brines were determined by using an improved procedure for precise measurement of chlorine isotopes based on Cs 2Cl + ion by...The variations in the isotopic compositions of chlorine in evaporation controlled saline lake brines were determined by using an improved procedure for precise measurement of chlorine isotopes based on Cs 2Cl + ion by thermal ionization mass spectrometry. The results showed that variation in δ 37 Cl values in these evaporation controlled brines are attributable to evaporation of brine accompanied by the deposition of saline minerals. The isotopic fractionation of chlorine between the deposited saline mineral and the co existing brine caused the variation of δ 37 Cl values in the brine. In general the isotopic fractionation of chlorine in nature indicates enrichment of 3 7Cl in the solid phase relative to 3 5Cl. The reverse isotopic fractionation of chlorine in which 3 5Cl is enriched in the solid phase, was observed to some extent during quick deposition under laboratory conditions as well as in nature. The mechanism of isotopic fractionation of chlorine during evaporation deposition was studied.展开更多
Fine particulate matter(PM_(2.5))and ozone(O_(3))double high pollution(DHP)events have occurred frequently over China in recent years,but their causes are not completely clear.In this study,the spatiotemporal distribu...Fine particulate matter(PM_(2.5))and ozone(O_(3))double high pollution(DHP)events have occurred frequently over China in recent years,but their causes are not completely clear.In this study,the spatiotemporal distribution of DHP events in China during 2013–20 is analyzed.The synoptic types affecting DHP events are identified with the Lamb–Jenkinson circulation classification method.The meteorological and chemical causes of DHP events controlled by the main synoptic types are further investigated.Results show that DHP events(1655 in total for China during 2013–20)mainly occur over the North China Plain,Yangtze River Delta,Pearl River Delta,Sichuan Basin,and Central China.The occurrence frequency increases by 5.1%during 2013–15,and then decreases by 56.1%during 2015–20.The main circulation types of DHP events are“cyclone”and“anticyclone”,accounting for over 40%of all DHP events over five main polluted regions in China,followed by southerly or easterly flat airflow types,like“southeast”,“southwest”,and“east”.Compared with non-DHP events,DHP events are characterized by static or weak wind,high temperature(20.9℃ versus 23.1℃)and low humidity(70.0%versus 64.9%).The diurnal cycles of meteorological conditions cause PM_(2.5)(0300–1200 LST,Local Standard Time=UTC+8 hours)and O_(3)(1500–2100 LST)to exceed the national standards at different periods of the DHP day.Three pollutant conversion indices further indicate the rapid secondary conversions during DHP events,and thus the concentrations of NO_(2),SO_(2) and volatile organic compounds decrease by 13.1%,4.7%and 4.4%,respectively.The results of this study can be informative for future decisions on the management of DHP events.展开更多
Polyamide thin film composite membranes have dominated current reverse osmosis market on account of their excellent separation performances compared to the integrally skinned counterparts.Despite their very promising ...Polyamide thin film composite membranes have dominated current reverse osmosis market on account of their excellent separation performances compared to the integrally skinned counterparts.Despite their very promising separation performance,chlorine-induced degradation resulted from the susceptibility of polyamide toward chlorine attack has been regarded as the Achilles’s heel of polyamide thin film composite.The free chlorine species present during chlorine treatment can impair membrane performance through chlorination and depolymerization of the polyamide selective layer.From material point of view,a chemically stable membrane is crucial for the sustainable application of membrane separation process as it warrants a longer membrane lifespan and reduces the cost involved in membrane replacement.Various strategies,particularly those involved membrane material optimization and surface modifications,have been established to address this issue.This review discusses membrane degradation by free chlorine attack and its correlation with the surface chemistry of polyamide.The advancement in the development of chlorine resistant polyamide thin film composite membranes is reviewed based on the state-of-the-art surface modifications and tailoring approaches which include the in situ and postfabrication membrane modifications using a broad range of functional materials.The challenges and future directions in this field are also highlighted.展开更多
1,4-dioxane pollution is characterized by its early identification, widespread sources and extensive distribution. The pollutant is highly mobile and persistent in the water environment and is classified as a B2(proba...1,4-dioxane pollution is characterized by its early identification, widespread sources and extensive distribution. The pollutant is highly mobile and persistent in the water environment and is classified as a B2(probable) human carcinogen. After reviewing recent researches on the pollution status,transport and transformation characteristics of 1,4-dioxane in the water environment, as well as the environmental pollution remediation and treatment technologies, and the status of environmental regulation,this paper addresses that the distribution of 1,4-dioxane in water bodies is significantly correlated with chlorinated hydrocarbon pollutants such as 1,1,1-trichloroethane(1,1,1-TCA) and trichloroethylene(TCE).It is noteworthy that 1,4-dioxane often occurs in symbiosis with 1,1,1-TCA and has a similarity contamination plume distribution to 1,1,1-TCA. The natural attenuation of 1,4-dioxane in groundwater environment is weak, but there is a certain degree of biological oxidation attenuation. Current methods for treating 1,4-dioxane pollution mainly include extraction-treatment technology, advanced oxidation treatment technology, modified biological treatment technology and phytoremediation technology, all of which have their limitations in practical application. Currently, there is no environmental regulation available for the 1,4-dioxane pollution worldwide, and no enforceable standard established for defining the health trigger levels of 1,4-dioxane in drinking water. Research on this contaminant in China is generally limited to the site or laboratory scale, and there are no studies on the environmental risk and quality standards for 1,4-dioxane in the water environment.展开更多
Globally,groundwater contamination by nitrate is one of the most widespread environmental problems,particularly in arid and semiarid areas,which are characterized by low amounts of rainfall and groundwater recharge.Th...Globally,groundwater contamination by nitrate is one of the most widespread environmental problems,particularly in arid and semiarid areas,which are characterized by low amounts of rainfall and groundwater recharge.The stable isotope composition of groundwater(δ2H-H2O andδ18O-H2O)and dissolved nitrate(δ15N-NO3–andδ18O-NO3–)and factor analysis(FA)were applied to explore groundwater provenance,pollution,and chemistry evolution in the northwestern part of the Amman-Al Zarqa Basin,Jordan.In this study,we collected 23 samples from the Lower Ajloun aquifer in 2021,including 1 sample from a groundwater well and 22 samples from springs.These samples were tested for electrical conductivity,total dissolved solids,pH,temperature,dissolved oxygen,the concentration of major ions(Ca2+,Mg2+,Na+,K+,HCO3–,Cl–,SO42–,and NO3–),and the stable isotope composition of groundwater and dissolved nitrate.The results revealed that groundwater in the study area is mainly Ca–Mg–HCO3 type and can be classified as fresh water,hard water,and very hard water.The range and average concentration of NO3–were 3.5–230.8 and 50.9 mg/L,respectively.Approximately 33%of the sampling points showed NO3–levels above the maximum allowable concentration of 50.0 mg/L set by the World Health Organization(WHO)guidelines for drinking water quality.The values ofδ18O-H2O andδ2H-H2O showed that groundwater in the study area is part of the current water cycle,originating in the Mediterranean Sea,with significant evaporation,orographic,and amount effects.The values of the stable isotope composition of NO3–corresponded toδ15N-NO3–andδ18O-NO3–values produced by the nitrification process of manure or septic waste and soil NH4+.The FA performed on the hydrochemical parameters and isotope data resulted in three main factors,with Factor 1,Factor 2,and Factor 3,accounting for 50%,21%,and 11%of the total variance,respectively.Factor 1 was considered human-induced factor,named"pollution factor",whereas Factor 2,named"conservative fingerprint factor",and Factor 3,named"hardness factor",were considered natural factors.This study will help local researchers manage groundwater sustainably in the study area and other similar arid and semiarid areas in the world.展开更多
Approximately 450 million tons of plastic and agricultural waste are produced each year in the world. Only a small portion of this plastic waste is recycled, and a small portion of this agricultural waste is used as f...Approximately 450 million tons of plastic and agricultural waste are produced each year in the world. Only a small portion of this plastic waste is recycled, and a small portion of this agricultural waste is used as fuel or fertilizer, and the rest of this waste is left in the environment or is burned, resulting in environmental and air pollution. For proper disposal, plastic and agricultural waste can be used in the manufacture of composites as raw materials. In this study, we had evaluated the use of bean pod powder (BPp) was used as natural reinforcing filler in recycled polypropylene (rPP) based composites. BPp/rPP composite filaments were developed using the extrusion method and the samples were printed by Fused Filament Fabrication (FFF). Composites with rPP matrix containing different weight fractions of BPp (5%, 10% and 15%) were fabricated to observe and compare the mechanical properties (tensile, flexural, and compressive strength) of the filament composites. In addition, the filament surface was analyzed for roughness and particle size of bean pod powder. The results established that BPp/rPP composites exhibited better tensile, flexural, and compressive strength than rPP and pure PP. By adding 5 wt% BPp, the tensile strength of rPP increased from 20.4 MPa to 22.8 MPa. The highest flexural strength (15.05 MPa) was obtained at 5 wt% BPp among all composites and the highest compressive strength (24.5 MPa), was obtained at 10 wt% BPp. Therefore, it can be concluded that by carefully selecting the ratio of BPp to bean pod powder, it is therefore possible to positively influence the mechanical properties of the resulting composite.展开更多
基金Sponsored by the Development Program for Outstanding Young Teachers in Harbin Institute of Technology (Grant No.HITQNJS.2008.042)State KeyLab of Urban Water Resource and Environment(Grant No. HIT.ES200803)Harbin Science and Technology Development Program for Young Innovative Scholars(Grant No.2009RFQXS010)
文摘Comparative pilot tests were conducted to investigate the coagulation-aid effects of the combined preoxidation by potassium permanganate composites (PPC) with chlorine and preozonation. And the synergistie mechanism of combined preoxidation was discussed. Results showed that 1.0 mg/L PPC with 2. 0 mg/L chlorine could further improve the quality of treated water, as indicated by residual turbidity, TOC and algae. The enhanced efficiency could be explained by the synergistic effect of the preoxidants themselves, or the effect of chlorine and the intermediate such as hydrous manganese dioxide, which was generated by potassium permanga- nate, the main ingredient of PPC.
基金supported by the National Natural Science Foundation of China(51568049,51468043,21366024,21665018)the National Science Fund for Excellent Young Scholars(51422807)+2 种基金the Natural Science Foundation of Jiangxi Province,China(20161BAB206118,20171ACB21035)the Distinguished Youth Science Fund of Jiangxi Province(20162BCB23043)the Natural Science Foundation of Jiangxi Provincial Department of Education,China(GJJ14515)~~
文摘The photocatalytic reduction of aqueous Cr(VI)to Cr(III)was preliminarily studied using porousg‐C3N4as a photocatalyst under acidic conditions.The observed synergistic photocatalytic effect ofporous g‐C3N4on a Cr(VI)/4‐chlorophenol(4‐CP)composite pollution system was further studiedunder different pH conditions.Compared with single‐component photocatalytic systems for Cr(VI)reduction or4‐CP degradation,the Cr(VI)reduction efficiency and4‐CP degradation efficiency weresimultaneously improved in the Cr(VI)/4‐CP composite pollution system.The synergistic photocatalyticeffect in the Cr(VI)/4‐CP composite pollution system can be attributed to the acceleratedredox reaction between dichromate and4‐CP by electron transfer with porous g‐C3N4.
文摘The variations in the isotopic compositions of chlorine in evaporation controlled saline lake brines were determined by using an improved procedure for precise measurement of chlorine isotopes based on Cs 2Cl + ion by thermal ionization mass spectrometry. The results showed that variation in δ 37 Cl values in these evaporation controlled brines are attributable to evaporation of brine accompanied by the deposition of saline minerals. The isotopic fractionation of chlorine between the deposited saline mineral and the co existing brine caused the variation of δ 37 Cl values in the brine. In general the isotopic fractionation of chlorine in nature indicates enrichment of 3 7Cl in the solid phase relative to 3 5Cl. The reverse isotopic fractionation of chlorine in which 3 5Cl is enriched in the solid phase, was observed to some extent during quick deposition under laboratory conditions as well as in nature. The mechanism of isotopic fractionation of chlorine during evaporation deposition was studied.
基金supported by the National Natural Science Foundation of China(Grant Nos.41830965 and 41905112)the Key Program of the Ministry of Science and Technology of the People’s Republic of China(Grant No.2019YFC0214703)+2 种基金the Hubei Natural Science Foundation(Grant No.2022CFB027)supported by the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry(Grant No.LAPC-KF-2023-07)the Key Laboratory of Atmospheric Chemistry,China Meteorological Administration(Grant No.2023B08).
文摘Fine particulate matter(PM_(2.5))and ozone(O_(3))double high pollution(DHP)events have occurred frequently over China in recent years,but their causes are not completely clear.In this study,the spatiotemporal distribution of DHP events in China during 2013–20 is analyzed.The synoptic types affecting DHP events are identified with the Lamb–Jenkinson circulation classification method.The meteorological and chemical causes of DHP events controlled by the main synoptic types are further investigated.Results show that DHP events(1655 in total for China during 2013–20)mainly occur over the North China Plain,Yangtze River Delta,Pearl River Delta,Sichuan Basin,and Central China.The occurrence frequency increases by 5.1%during 2013–15,and then decreases by 56.1%during 2015–20.The main circulation types of DHP events are“cyclone”and“anticyclone”,accounting for over 40%of all DHP events over five main polluted regions in China,followed by southerly or easterly flat airflow types,like“southeast”,“southwest”,and“east”.Compared with non-DHP events,DHP events are characterized by static or weak wind,high temperature(20.9℃ versus 23.1℃)and low humidity(70.0%versus 64.9%).The diurnal cycles of meteorological conditions cause PM_(2.5)(0300–1200 LST,Local Standard Time=UTC+8 hours)and O_(3)(1500–2100 LST)to exceed the national standards at different periods of the DHP day.Three pollutant conversion indices further indicate the rapid secondary conversions during DHP events,and thus the concentrations of NO_(2),SO_(2) and volatile organic compounds decrease by 13.1%,4.7%and 4.4%,respectively.The results of this study can be informative for future decisions on the management of DHP events.
基金support provided by the Ministry of Higher Education Malaysia under Malaysia Research University Network Grant(Grant No.4L862)the research support provided by Universiti Teknologi Malaysia.
文摘Polyamide thin film composite membranes have dominated current reverse osmosis market on account of their excellent separation performances compared to the integrally skinned counterparts.Despite their very promising separation performance,chlorine-induced degradation resulted from the susceptibility of polyamide toward chlorine attack has been regarded as the Achilles’s heel of polyamide thin film composite.The free chlorine species present during chlorine treatment can impair membrane performance through chlorination and depolymerization of the polyamide selective layer.From material point of view,a chemically stable membrane is crucial for the sustainable application of membrane separation process as it warrants a longer membrane lifespan and reduces the cost involved in membrane replacement.Various strategies,particularly those involved membrane material optimization and surface modifications,have been established to address this issue.This review discusses membrane degradation by free chlorine attack and its correlation with the surface chemistry of polyamide.The advancement in the development of chlorine resistant polyamide thin film composite membranes is reviewed based on the state-of-the-art surface modifications and tailoring approaches which include the in situ and postfabrication membrane modifications using a broad range of functional materials.The challenges and future directions in this field are also highlighted.
文摘1,4-dioxane pollution is characterized by its early identification, widespread sources and extensive distribution. The pollutant is highly mobile and persistent in the water environment and is classified as a B2(probable) human carcinogen. After reviewing recent researches on the pollution status,transport and transformation characteristics of 1,4-dioxane in the water environment, as well as the environmental pollution remediation and treatment technologies, and the status of environmental regulation,this paper addresses that the distribution of 1,4-dioxane in water bodies is significantly correlated with chlorinated hydrocarbon pollutants such as 1,1,1-trichloroethane(1,1,1-TCA) and trichloroethylene(TCE).It is noteworthy that 1,4-dioxane often occurs in symbiosis with 1,1,1-TCA and has a similarity contamination plume distribution to 1,1,1-TCA. The natural attenuation of 1,4-dioxane in groundwater environment is weak, but there is a certain degree of biological oxidation attenuation. Current methods for treating 1,4-dioxane pollution mainly include extraction-treatment technology, advanced oxidation treatment technology, modified biological treatment technology and phytoremediation technology, all of which have their limitations in practical application. Currently, there is no environmental regulation available for the 1,4-dioxane pollution worldwide, and no enforceable standard established for defining the health trigger levels of 1,4-dioxane in drinking water. Research on this contaminant in China is generally limited to the site or laboratory scale, and there are no studies on the environmental risk and quality standards for 1,4-dioxane in the water environment.
基金funded by the Deanship of Scientific Research,Jordan University of Science and Technology(20210159).
文摘Globally,groundwater contamination by nitrate is one of the most widespread environmental problems,particularly in arid and semiarid areas,which are characterized by low amounts of rainfall and groundwater recharge.The stable isotope composition of groundwater(δ2H-H2O andδ18O-H2O)and dissolved nitrate(δ15N-NO3–andδ18O-NO3–)and factor analysis(FA)were applied to explore groundwater provenance,pollution,and chemistry evolution in the northwestern part of the Amman-Al Zarqa Basin,Jordan.In this study,we collected 23 samples from the Lower Ajloun aquifer in 2021,including 1 sample from a groundwater well and 22 samples from springs.These samples were tested for electrical conductivity,total dissolved solids,pH,temperature,dissolved oxygen,the concentration of major ions(Ca2+,Mg2+,Na+,K+,HCO3–,Cl–,SO42–,and NO3–),and the stable isotope composition of groundwater and dissolved nitrate.The results revealed that groundwater in the study area is mainly Ca–Mg–HCO3 type and can be classified as fresh water,hard water,and very hard water.The range and average concentration of NO3–were 3.5–230.8 and 50.9 mg/L,respectively.Approximately 33%of the sampling points showed NO3–levels above the maximum allowable concentration of 50.0 mg/L set by the World Health Organization(WHO)guidelines for drinking water quality.The values ofδ18O-H2O andδ2H-H2O showed that groundwater in the study area is part of the current water cycle,originating in the Mediterranean Sea,with significant evaporation,orographic,and amount effects.The values of the stable isotope composition of NO3–corresponded toδ15N-NO3–andδ18O-NO3–values produced by the nitrification process of manure or septic waste and soil NH4+.The FA performed on the hydrochemical parameters and isotope data resulted in three main factors,with Factor 1,Factor 2,and Factor 3,accounting for 50%,21%,and 11%of the total variance,respectively.Factor 1 was considered human-induced factor,named"pollution factor",whereas Factor 2,named"conservative fingerprint factor",and Factor 3,named"hardness factor",were considered natural factors.This study will help local researchers manage groundwater sustainably in the study area and other similar arid and semiarid areas in the world.
文摘Approximately 450 million tons of plastic and agricultural waste are produced each year in the world. Only a small portion of this plastic waste is recycled, and a small portion of this agricultural waste is used as fuel or fertilizer, and the rest of this waste is left in the environment or is burned, resulting in environmental and air pollution. For proper disposal, plastic and agricultural waste can be used in the manufacture of composites as raw materials. In this study, we had evaluated the use of bean pod powder (BPp) was used as natural reinforcing filler in recycled polypropylene (rPP) based composites. BPp/rPP composite filaments were developed using the extrusion method and the samples were printed by Fused Filament Fabrication (FFF). Composites with rPP matrix containing different weight fractions of BPp (5%, 10% and 15%) were fabricated to observe and compare the mechanical properties (tensile, flexural, and compressive strength) of the filament composites. In addition, the filament surface was analyzed for roughness and particle size of bean pod powder. The results established that BPp/rPP composites exhibited better tensile, flexural, and compressive strength than rPP and pure PP. By adding 5 wt% BPp, the tensile strength of rPP increased from 20.4 MPa to 22.8 MPa. The highest flexural strength (15.05 MPa) was obtained at 5 wt% BPp among all composites and the highest compressive strength (24.5 MPa), was obtained at 10 wt% BPp. Therefore, it can be concluded that by carefully selecting the ratio of BPp to bean pod powder, it is therefore possible to positively influence the mechanical properties of the resulting composite.