20 Quantum chemical parameters of chlorophenol compounds were fully optimized by using B3LYP method on both 6-31G^* and 6-311G^* basis sets. These structural parameters are taken as theoretical descriptors, and the ...20 Quantum chemical parameters of chlorophenol compounds were fully optimized by using B3LYP method on both 6-31G^* and 6-311G^* basis sets. These structural parameters are taken as theoretical descriptors, and the experimental data of 20 compounds' aquatic photogen toxicity(-lgEC50) are used to perform stepwise regression in order to obtain two predicted -lgEC50 correlation models whose correlation coefficients R^2 are respectively 0.9186 and 0.9567. In addition, parameters of chlorine atom's substitutive positions and their correlations (NPCs) are taken as descriptors to obtain another predicted -lgEC50 model with the correlation coefficient R2 of 0.9444. Correlation degree of each independent variable in the three models is verified by using variance inflation factors (VIF) and t value. In the cross-validation method, cross-validation coefficients q^2 of 3 models are respectively 0.8748, 0.9119 and 0.8993, which indicates that the relativity and prediction ability of this model are superior to those of the model obtained by topological and BLYP methods.展开更多
Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The p...Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm^2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively.展开更多
A hypercrosslinked polymeric adsorbent (ZH-03) for adsorbing and removing chlorophenolic compounds from their aqueous solutions was studied, including the static adsorption. The equilibrium adsorption data were fit ...A hypercrosslinked polymeric adsorbent (ZH-03) for adsorbing and removing chlorophenolic compounds from their aqueous solutions was studied, including the static adsorption. The equilibrium adsorption data were fit to Freundlich adsorption isothermic models to evaluate the model parameters. Thermodynamic studies on the adsorption of chlorophenolic compounds on ZH-03 indicated that there were chemisorption transitions for 2,4,6-trichlorophenol and physical adsorption processes for 2-chlorophenol and 2,6-chlorophenol, and ZH-03 showed the homogeneous nature of the adsorbent surface. Column adsorption for chlorophenols wastewater shows the advantages of the ZH-03 adsorbent for adsorbing the following chlorophenolic compounds as 2-chlorophenol, 2,6-dichlorophenol and 2,4,6-trichlorophenol. Sodium hydroxide was used for desorpting chlorophenols from ZH-03 and showed excellent performance.展开更多
A new cell immobilization method based on the replacement of KCl by KCl+chitosan as the gelling agent was developed. The experimental results showed that through addition of chitosan into gelling agent, the mechanica...A new cell immobilization method based on the replacement of KCl by KCl+chitosan as the gelling agent was developed. The experimental results showed that through addition of chitosan into gelling agent, the mechanical strength and the thermal stability of the carrageenan gel were greatly improved. The new immobilization method was used to entrap a chlorophenol degrading microorganism. The immobilized microbial cells were applied for chlorophenol biodegradation. The experiments demonstrated that immobilized cells exhibit a higher bioactivity in the degradation of chlorophenol than free cells.展开更多
The electrochemical treatment of wastewater containing chlorophenols (2-monochlorophenol, 4-monochlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol) was carried out experimentally with synthetic boron-d0ped diam...The electrochemical treatment of wastewater containing chlorophenols (2-monochlorophenol, 4-monochlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol) was carried out experimentally with synthetic boron-d0ped diamond (BDD) thin film electrodes. Current vs time curves under different cell voltages were measured. Removal rate of COD, instant current efficiency (ICE) and energy consumption were investigated under different current densities. The influence of supporting media is reported, which plays an important role in determining the global oxidation rate. The oxidative chloride is stronger than peroxodisulphate. The electrochemical characteristics of boron-doped diamond electrodes were investigated in comparison with active coating Ti substrate anode (ACT). The experimental results show that BDD is markedly superior to ACT due to its different absorption properties.展开更多
Nanoscale Pd/Fe bimetallic particles were synthesized with an efficient method to dechlorinate o-chlorophenol. The nanoscale Pd/Fe particles were determined by transmission electron microscopy and BET specific surface...Nanoscale Pd/Fe bimetallic particles were synthesized with an efficient method to dechlorinate o-chlorophenol. The nanoscale Pd/Fe particles were determined by transmission electron microscopy and BET specific surface area analysis. Most of the particles are in the size range of 20—100 nm. The BET specific surface area of synthesized nanoscale Pd/Fe particles is 12.4 m 2/g. In contrast, a commercially available fine iron powder(<100 mesh) has a specific surface area of 0.49 m 2/g. Batch studies demonstrated that the nanoscale particles can effectively dechlorinate o-chlorophenol. The dechlorination reaction takes place on the surface of synthesized nanoscale Pd/Fe bimetallic particles in a pseudo-first order reaction. The surface-area-normalized rate coefficients(k_ SA) are comparable to those reported in the literature for chlorinated ethenes. The observed reaction rate constants(k_ obs) are dominated by the mass fraction of Pd and the mass concentration of the nanoscale Pd/Fe particles.展开更多
Candida albicans PDY-07 was isolated from activated sludge under anaerobic conditions and identified as a member belonging to the genus Candida. Pure culture of C. albicans PDY-07, biodegradation of 4-chlorophenol (4-...Candida albicans PDY-07 was isolated from activated sludge under anaerobic conditions and identified as a member belonging to the genus Candida. Pure culture of C. albicans PDY-07, biodegradation of 4-chlorophenol (4-CP) was carried out under anaerobic conditions in Erlenmeyer flasks at 35°C, with an initial pH of 7.0–7.2 and a starting inoculum of 10%(by volume). The results showed that, under the above-mentioned conditions, C. albicans PDY-07 could thoroughly biodegrade 4-CP up to a concentration of 300mg·L?1 within 244h and that it had a high tolerance potential of up to 440mg·L?1 for 4-CP. With the increase in the initial concentrations of 4-CP, substrate inhibition was obviously enhanced. There was increased consumption of 4-CP, which was not assimilated by the cell for growth but was used to counteract the strong substrate inhibition. In addition, the cell growth and substrate-degradation kinetics of 4-CP as the sole source of carbon and energy for the strain in batch cultures were also investigated over a wide range of substrate concentrations (2.2–350mg·L?1), using the proposed cell growth and degradation kinetic models. The results recorded from these experiments showed that the proposed kinetic models adequately described the dynamic behavior of 4-CP biodegradation by C. albicans PDY-07.展开更多
The oxidative degradation of 4-chlorophenol (4-CP) in aqueous solution induced by plasma with submersed glow discharge has been investigated. The concentration of 4-CP and the reaction intermediates were determined ...The oxidative degradation of 4-chlorophenol (4-CP) in aqueous solution induced by plasma with submersed glow discharge has been investigated. The concentration of 4-CP and the reaction intermediates were determined by high performance liquid chromatography (HPLC). Various influencing factors such as the initial pH, the concentration of 4-CP and the catalytic action of Fe^2+ were examined. The results indicate that 4-CP is eventually degraded into inorganic ion, dioxide carbon and water. The attack of hydroxyl radicals on the benzene rings of 4-CP in the initial stage of oxidative reactions is presumed to be a key step. They also suggest that the reaction is of a pseudo-first order kinetic reaction and the proposed method is an efficient way for the 4-CP degradation,展开更多
Chlorophenols(CPs)are significant refractory pollutants that are highly toxic to humans and other organ-isms.Reactive electrode membranes(REMs)show considerable potential in the electrochemical removal of refractory p...Chlorophenols(CPs)are significant refractory pollutants that are highly toxic to humans and other organ-isms.Reactive electrode membranes(REMs)show considerable potential in the electrochemical removal of refractory pollutants by allowing flow-through operations with convection-enhanced mass transfer.However,relevant studies are commonly performed on the laboratory scale,and there is no straightfor-ward method that guarantees success in scaling up engineered REM reactors.In this study,we demon-strated that a tubular concentric electrode(TCE)configuration with a titanium suboxide ceramic anode and a stainless-steel cathode is suitable for large-scale CPs removal.Both theoretical and experi-mental results showed that the TCE configuration not only allows the electrode surface to be orthogonal to electric field lines everywhere,but also has an ohmic resistance that is inversely proportional to the length of the electrode.In addition,the TCE configuration can be operated in either the anode-to-cathode(AC)or the cathode-to-anode(CA)mode based on the flow direction,creating adjustable condi-tions for selective degradation of CPs.This was confirmed by 98%removal of 2,4-dichlorophenol(2,4-DCP)and 72.5%removal of chemical oxygen demand(COD)in the CA mode,in which the kinetic constant was one order of magnitude higher than that for the AC mode under flow-through single-pass operations.This can be explained by the lower activation energy and free energy in the CA mode,as revealed by the-oretical calculations and experimental measurements.The TCE configuration is also suitable for a numbering-up strategy to scale up the electrochemical reactor without increasing the ohmic resistance or decreasing the specific electrode area,achieving 99.4%removal of 2,4-DCP with an energy consump-tion of 1.5 kW·h·m^(-3) when three TCE modules were employed.This study presents a suitable electrode design configuration for the REM reactor,offering effective strategies to bridge the“Valley of Death”encountered when scaling up the electrochemical removal of CP pollutants.展开更多
Experimental data are presented to test and validate a kinetic model for the oxidation of 2 chlorophenol wastewater by photo assisted Fenton process. The data showed that this process had produced good effects under a...Experimental data are presented to test and validate a kinetic model for the oxidation of 2 chlorophenol wastewater by photo assisted Fenton process. The data showed that this process had produced good effects under acidic conductions. Up to 90% 2 chlorophenol was removed after 90 minute reaction time with H 2O 2 of 25% COD Cr, in , while in UV/H 2O 2 system only 16 8% 2 chlorophenol was removed after one hour treatment. The optimal pH in this reaction occurred between pH 3 0 and pH 4.0. The reaction kinetics for photo assisted Fenton process experimented in this research was investigated. Kinetic models were proposed for the treatment of 2 chlorophenol wastewater. The reaction was found to follow the 2nd order. The equations of reaction kinetics are as follows:-d[RH]d t = K RH [RH][H 2O 2] 0exp (-K H 2O 2 t );-d[COD Cr ]d t = K COD Cr [COD Cr ][H 2O 2] 0exp(-K′ t ). The prediction of the models was found to be in a good agreement with experimental results, thus confirming the proposed reaction mechanism.展开更多
This paper provides evidence for the degradation of organic pollutant by the photo-Fenton complex mechanism. Both the complex oxidation and HO. oxidation mechanisms were verified by p-chlorophenol degradation, UV/Vis ...This paper provides evidence for the degradation of organic pollutant by the photo-Fenton complex mechanism. Both the complex oxidation and HO. oxidation mechanisms were verified by p-chlorophenol degradation, UV/Vis spectra anaylsis, and quantum yield. The hydroxyl radical involved in the photo-Fenton process can also be generated from the decomposition of H2O2, photolysis of Fe^3+ and degradation of hydrated Fe(Ⅵ)-complex, excepting the traditional Fenton reaction.展开更多
A novel in-situ electrochemical oxidation method was applied to the degradation of wastewater containing chlorophenol. Under oxygen sparging, the strong oxidant, hydrogen dioxide, could be in-situ generated through th...A novel in-situ electrochemical oxidation method was applied to the degradation of wastewater containing chlorophenol. Under oxygen sparging, the strong oxidant, hydrogen dioxide, could be in-situ generated through the reduction of oxygen on the surface of the cathode. The removal rate ofchlorophenol could be increased 149% when oxygen was induced in the electrochemical cell. The promotion factor was estimated to be about 82.63% according to the pseudo-first-order reaction rate constant (min^-1). Important operating parameters such as current density, sparged oxygen rate were investigated. Higher sparged oxygen rate could improve the degradation of chlorophenol. To make full use of oxygen, however, sparged oxygen rate of 0.05 m3/h was adopted in this work. Oxidation-reduction potential could remarkably affect the generation of hydrogen peroxide. It was found that the removal rate of chlorophenol was not in direct proportion to the applied current density. The optimum current density was 3.5 mA/cm^2 when initial chlorophenol concentration was 100 mg/L and sparged oxygen rate was 0.05 m^3/h.展开更多
A novel, simple, rapid, sensitive and highly selective flow injection procedure for the spectrophotometric determination of chlorine dioxide in the presence of other chlorine species, viz,free chlorine, chlorite, chlo...A novel, simple, rapid, sensitive and highly selective flow injection procedure for the spectrophotometric determination of chlorine dioxide in the presence of other chlorine species, viz,free chlorine, chlorite, chlorate and hypochlorite, is developed. The method is based on the discoloration reaction between chlorine dioxide and chlorophenol red and can overcome the shortcomings existed in direct spectrophotometric determination for chlorine dioxide owing to the serious interference of free and combined chlorine. The procedure gave a linear calibration graph over the range 0—0.71 mg/L of chlorine dioxide. With a detection limit of 0.024 mg/L and a sample throughput of 60 samples/h.展开更多
A series of metal oxide catalysts for catalytic oxidative degradation of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) were prepared, and the supported CuO catalysts were studied particularly. The supported CuO ...A series of metal oxide catalysts for catalytic oxidative degradation of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) were prepared, and the supported CuO catalysts were studied particularly. The supported CuO catalysts were characterized by XRD and NH3-TPD techniques, in which CuO/γ-Al2O3 exhibited high degradation activity. The addition of Na2O or K2O into CuO/γ-Al2O3 improved the oxidative degradation of CPs remarkably, in which Na2O was more efficient than K2O. Over CuO/γ-Al2O3-Na2O, CPs were completely converted and the liberation of the inorganic chloride from 2-CP or 4-CP reached 97% or 100% respectively at 30 ?C for 2 h. The supported CuO catalysts with good dispersion of CuO particles and less acid sites were favorable for the efficient oxidative degradation of CPs. In addition, the initial pH of the reaction solution was found to be an important factor which influenced the catalytic oxidative degradation of CPs and the initial pH of 11.2 and 9.8 was preferred for the oxidative degradation of 2-CP and 4-CP respectively over CuO/γ-Al2O3 catalyst.展开更多
18 Physicochemical and quantum chemical parameters of 12 kinds of chlorophenols are calculated in this paper. QSBR (quantitative structure-biodegradability relationship) study is performed using simca statistical so...18 Physicochemical and quantum chemical parameters of 12 kinds of chlorophenols are calculated in this paper. QSBR (quantitative structure-biodegradability relationship) study is performed using simca statistical software by PLS regression analysis method on anaerobic biodegradation data (logKb), and the QSBR model is developed with favorable prediction. The model shows that the size and energy of the molecule are the dominant factors affecting the anaerobic biodegradation of chlorophenols. And the degradation rate constants (logKb) increase with the increase of core-core repulsion (CCR), average molecular polarizability (α), total surface area (TSA), heat of formation (HOF) and total energy (TE). while decrease with the increase of molecular connectivity index (^1X^V), relative molecular mass (Mw) and electronic energy (EE).展开更多
Soil contaminated with pesticides may reduce plant development due to their toxicity. The aim of this study was to evaluate the influence on the germination of </span><i><span style="font-family:Ve...Soil contaminated with pesticides may reduce plant development due to their toxicity. The aim of this study was to evaluate the influence on the germination of </span><i><span style="font-family:Verdana;">Zea mayz</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">Phaseolus vulgaris </span></i><span style="font-family:Verdana;">of the two main intermediates of the 2,4-D degradation, which are 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP). Maize and bean seeds were treated with distilled water (control treatment) and increased concentrations of 4-CP and 2,4-DCP (0.006, 0.1, 1.0, 1.5 g·L</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">). It was assessed seed germination and calculated various parameters. The parameter most affected by chlorophenols was the index of germination rate, being the </span><i><span style="font-family:Verdana;">P. vulgaris</span></i><span style="font-family:Verdana;"> seeds most affected. 2,4-DCP was the compound most toxic for both plants. The germination index was dependent </span><span style="font-family:Verdana;">doses for both plant models tested. The results indicate that 4-CP and</span><span style="font-family:Verdana;"> 2,4-DCP affected the index of germination rate but not influenced in other parameters of germination of </span><i><span style="font-family:Verdana;">Zea mayz</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">Phaseolus vulgaris.</span></i><span style="font-family:Verdana;"> Maize was </span><span style="font-family:Verdana;">most tolerance to both chlorophenols in the assessed concentrations. 2,4-DCP </span><span style="font-family:Verdana;">was the most toxic of chlorophenols tested.展开更多
Candida albicans PDY-07 was isolated from activated sludge under anaerobic conditions and identified as a member belonging to the genus Candida. Pure culture of C. albicans PDY-07, biodegradation of 4-chlorophenol 4-C...Candida albicans PDY-07 was isolated from activated sludge under anaerobic conditions and identified as a member belonging to the genus Candida. Pure culture of C. albicans PDY-07, biodegradation of 4-chlorophenol 4-CP was carried out under anaerobic conditions in Erlenmeyer flasks at 35℃, with an initial pH of 7.0—7.2 and a starting inoculum of 10% by volume. The results showed that, under the above-mentioned con- ditions, C. albicans PDY-07 could thoroughly biodegrade 4-CP up to a concentration of 300mg·L-1 within 244h and that it had a high tolerance potential of up to 440mg·L-1 for 4-CP. With the increase in the initial concentrations of 4-CP, substrate inhibition was obviously enhanced. There was increased consumption of 4-CP, which was not assimilated by the cell for growth but was used to counteract the strong substrate inhibition. In addition, the cell growth and substrate-degradation kinetics of 4-CP as the sole source of carbon and energy for the strain in batch cultures were also investigated over a wide range of substrate concentrations 2.2—350mg·L-1, using the proposed cell growth and degradation kinetic models. The results recorded from these experiments showed that the proposed kinetic models adequately described the dynamic behavior of 4-CP biodegradation by C. albicans PDY-07.展开更多
Fenton oxidation was used as the pretreatment of 2-chlorophenol wastewater with the objective of dechlorination, as it was considered that after breakage of aryl—Cl bond, the generated intermediates may be easily bio...Fenton oxidation was used as the pretreatment of 2-chlorophenol wastewater with the objective of dechlorination, as it was considered that after breakage of aryl—Cl bond, the generated intermediates may be easily biodegraded. Hence, the optimization of pH and the low Fenton reagent doses for dechlorination was investigated. More than 99% dechlorination is obtained at the optimal pH 4 and the Fenton reagent doses of 86 mmol/L H2 O2 and 2.87 mmol/L Fe2+. The corresponding 2-chlorophenol is degraded completely, 80.02% COD is also removed, and the biodegradability, evaluated in terms of the BOD5 /COD ratio, is increased up to 0.41. To test the effect of this pretreatment, the pretreated 2-chlorophenol wastewater was fed to a sequencing batch reactor(SBR). The results show that complete mineralization is achieved. It is demonstrated that, for the treatment of recalcitrant compounds like 2-chlorophenol, the Fenton pretreatment could be quite effective and economical for enhancing the biodegradability in a Fenton-biological coupled system.展开更多
Chlorophenols (2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol and 2,4, 6-trichlorophenol) may be presented in natural waters or drinking water as a result of disinfection processes involving ch...Chlorophenols (2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol and 2,4, 6-trichlorophenol) may be presented in natural waters or drinking water as a result of disinfection processes involving chlorination, or as contaminants derived from domestic products, industrial operations and agricultural chemicals. A previous HPLC-UV method for determination of phenol and five chlorophenols in tap water using 4-fluoro-7-nitro-2,1,3-benzoxadiaole as a UV labeling reagent shows limited sensitivity. Here, we present an improved HPLC-fluorescence detection method for simultaneous determination of phenol and the above chlorophenols in tap water after pre-column derivatization with 3-chlorocarbonyl-6,7-dimethoxy-1-methyl-2(1H)-quino- xalinone (DMEQ-COCl), using a short, narrow column (50 × 2.1 mm i.d., packed with 5 μm particles of C18 material) to improve the sensitivity. Standard samples containing the compounds are derivatized with DMEQ-COCl in borate buffer (pH 9.0) at room temperature for 3 mins. The response is linear in the concentration range of 0.01 - 0.05 to 0.5 mg/L with r2 values ≥0.9967 for all compounds. The lower limits of detection are 0.001 to 0.008 mg/L, and the coefficients of variation are less than 8.8%. The recovery values from tap water spiked with standard samples are satisfactory. The present method is suitable for examining whether or not tap water samples are contaminated with phenol and chlorophenols in excess of regulatory values.展开更多
Contact glow discharge electrolysis (CGDE) of o-chlorophenol (2-CP) was investigated under different pH, voltages and initial concentrations. And the mechanism of the oxidation was explored. The results suggested that...Contact glow discharge electrolysis (CGDE) of o-chlorophenol (2-CP) was investigated under different pH, voltages and initial concentrations. And the mechanism of the oxidation was explored. The results suggested that the degradation followed the first order kinetic law; Fe2+ had a remarkable catalytic effect on the removal rate of o-chloropenol. In the presence of Fe2+, 2-CP underwent an exhaustive degradation, from which the major intermediates included o-dihydroxybenze, p-hydroxybenze, p-benzoquione and carboxlic acids.展开更多
基金973 National Basic Research Program of China (2003CB415002)
文摘20 Quantum chemical parameters of chlorophenol compounds were fully optimized by using B3LYP method on both 6-31G^* and 6-311G^* basis sets. These structural parameters are taken as theoretical descriptors, and the experimental data of 20 compounds' aquatic photogen toxicity(-lgEC50) are used to perform stepwise regression in order to obtain two predicted -lgEC50 correlation models whose correlation coefficients R^2 are respectively 0.9186 and 0.9567. In addition, parameters of chlorine atom's substitutive positions and their correlations (NPCs) are taken as descriptors to obtain another predicted -lgEC50 model with the correlation coefficient R2 of 0.9444. Correlation degree of each independent variable in the three models is verified by using variance inflation factors (VIF) and t value. In the cross-validation method, cross-validation coefficients q^2 of 3 models are respectively 0.8748, 0.9119 and 0.8993, which indicates that the relativity and prediction ability of this model are superior to those of the model obtained by topological and BLYP methods.
基金Project supported by the Institute of Environmental Engineering,Peking University and China Postdoctoral Science Foundation(No.2005037032)
文摘Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm^2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively.
基金This work was funded by the Educational Bureau of Jiangsu Province, China (Grant Code 04KJB150153 and 05KJD610250).
文摘A hypercrosslinked polymeric adsorbent (ZH-03) for adsorbing and removing chlorophenolic compounds from their aqueous solutions was studied, including the static adsorption. The equilibrium adsorption data were fit to Freundlich adsorption isothermic models to evaluate the model parameters. Thermodynamic studies on the adsorption of chlorophenolic compounds on ZH-03 indicated that there were chemisorption transitions for 2,4,6-trichlorophenol and physical adsorption processes for 2-chlorophenol and 2,6-chlorophenol, and ZH-03 showed the homogeneous nature of the adsorbent surface. Column adsorption for chlorophenols wastewater shows the advantages of the ZH-03 adsorbent for adsorbing the following chlorophenolic compounds as 2-chlorophenol, 2,6-dichlorophenol and 2,4,6-trichlorophenol. Sodium hydroxide was used for desorpting chlorophenols from ZH-03 and showed excellent performance.
文摘A new cell immobilization method based on the replacement of KCl by KCl+chitosan as the gelling agent was developed. The experimental results showed that through addition of chitosan into gelling agent, the mechanical strength and the thermal stability of the carrageenan gel were greatly improved. The new immobilization method was used to entrap a chlorophenol degrading microorganism. The immobilized microbial cells were applied for chlorophenol biodegradation. The experiments demonstrated that immobilized cells exhibit a higher bioactivity in the degradation of chlorophenol than free cells.
基金Project(20113282241450) supported by the Science and Technology Program from Ministry of Transport of China
文摘The electrochemical treatment of wastewater containing chlorophenols (2-monochlorophenol, 4-monochlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol) was carried out experimentally with synthetic boron-d0ped diamond (BDD) thin film electrodes. Current vs time curves under different cell voltages were measured. Removal rate of COD, instant current efficiency (ICE) and energy consumption were investigated under different current densities. The influence of supporting media is reported, which plays an important role in determining the global oxidation rate. The oxidative chloride is stronger than peroxodisulphate. The electrochemical characteristics of boron-doped diamond electrodes were investigated in comparison with active coating Ti substrate anode (ACT). The experimental results show that BDD is markedly superior to ACT due to its different absorption properties.
文摘Nanoscale Pd/Fe bimetallic particles were synthesized with an efficient method to dechlorinate o-chlorophenol. The nanoscale Pd/Fe particles were determined by transmission electron microscopy and BET specific surface area analysis. Most of the particles are in the size range of 20—100 nm. The BET specific surface area of synthesized nanoscale Pd/Fe particles is 12.4 m 2/g. In contrast, a commercially available fine iron powder(<100 mesh) has a specific surface area of 0.49 m 2/g. Batch studies demonstrated that the nanoscale particles can effectively dechlorinate o-chlorophenol. The dechlorination reaction takes place on the surface of synthesized nanoscale Pd/Fe bimetallic particles in a pseudo-first order reaction. The surface-area-normalized rate coefficients(k_ SA) are comparable to those reported in the literature for chlorinated ethenes. The observed reaction rate constants(k_ obs) are dominated by the mass fraction of Pd and the mass concentration of the nanoscale Pd/Fe particles.
基金Supported by the National Natural Science Foundation of China (No.20336030) and the Natural Science Foundation of Tianjin(No.05YFJZJC 00500).
文摘Candida albicans PDY-07 was isolated from activated sludge under anaerobic conditions and identified as a member belonging to the genus Candida. Pure culture of C. albicans PDY-07, biodegradation of 4-chlorophenol (4-CP) was carried out under anaerobic conditions in Erlenmeyer flasks at 35°C, with an initial pH of 7.0–7.2 and a starting inoculum of 10%(by volume). The results showed that, under the above-mentioned conditions, C. albicans PDY-07 could thoroughly biodegrade 4-CP up to a concentration of 300mg·L?1 within 244h and that it had a high tolerance potential of up to 440mg·L?1 for 4-CP. With the increase in the initial concentrations of 4-CP, substrate inhibition was obviously enhanced. There was increased consumption of 4-CP, which was not assimilated by the cell for growth but was used to counteract the strong substrate inhibition. In addition, the cell growth and substrate-degradation kinetics of 4-CP as the sole source of carbon and energy for the strain in batch cultures were also investigated over a wide range of substrate concentrations (2.2–350mg·L?1), using the proposed cell growth and degradation kinetic models. The results recorded from these experiments showed that the proposed kinetic models adequately described the dynamic behavior of 4-CP biodegradation by C. albicans PDY-07.
基金The project partially supported by the Project of Key Science and Technology of Education Ministry (00250), the Natural ScienceFoundation of Gansu Province (3ZS041-A25-028), and the Project of KJCXGC-01, NWNU, China
文摘The oxidative degradation of 4-chlorophenol (4-CP) in aqueous solution induced by plasma with submersed glow discharge has been investigated. The concentration of 4-CP and the reaction intermediates were determined by high performance liquid chromatography (HPLC). Various influencing factors such as the initial pH, the concentration of 4-CP and the catalytic action of Fe^2+ were examined. The results indicate that 4-CP is eventually degraded into inorganic ion, dioxide carbon and water. The attack of hydroxyl radicals on the benzene rings of 4-CP in the initial stage of oxidative reactions is presumed to be a key step. They also suggest that the reaction is of a pseudo-first order kinetic reaction and the proposed method is an efficient way for the 4-CP degradation,
基金supported by the National Natural Science Foun-dation of China(U21A20161 and 51822806)State Key Laboratory of Urban Water Resource and Environment,China(Harbin Institute of Technology)(2020DX07)Heilongjiang Touyan Innovation Team Program,China(HIT-SE-01).
文摘Chlorophenols(CPs)are significant refractory pollutants that are highly toxic to humans and other organ-isms.Reactive electrode membranes(REMs)show considerable potential in the electrochemical removal of refractory pollutants by allowing flow-through operations with convection-enhanced mass transfer.However,relevant studies are commonly performed on the laboratory scale,and there is no straightfor-ward method that guarantees success in scaling up engineered REM reactors.In this study,we demon-strated that a tubular concentric electrode(TCE)configuration with a titanium suboxide ceramic anode and a stainless-steel cathode is suitable for large-scale CPs removal.Both theoretical and experi-mental results showed that the TCE configuration not only allows the electrode surface to be orthogonal to electric field lines everywhere,but also has an ohmic resistance that is inversely proportional to the length of the electrode.In addition,the TCE configuration can be operated in either the anode-to-cathode(AC)or the cathode-to-anode(CA)mode based on the flow direction,creating adjustable condi-tions for selective degradation of CPs.This was confirmed by 98%removal of 2,4-dichlorophenol(2,4-DCP)and 72.5%removal of chemical oxygen demand(COD)in the CA mode,in which the kinetic constant was one order of magnitude higher than that for the AC mode under flow-through single-pass operations.This can be explained by the lower activation energy and free energy in the CA mode,as revealed by the-oretical calculations and experimental measurements.The TCE configuration is also suitable for a numbering-up strategy to scale up the electrochemical reactor without increasing the ohmic resistance or decreasing the specific electrode area,achieving 99.4%removal of 2,4-DCP with an energy consump-tion of 1.5 kW·h·m^(-3) when three TCE modules were employed.This study presents a suitable electrode design configuration for the REM reactor,offering effective strategies to bridge the“Valley of Death”encountered when scaling up the electrochemical removal of CP pollutants.
文摘Experimental data are presented to test and validate a kinetic model for the oxidation of 2 chlorophenol wastewater by photo assisted Fenton process. The data showed that this process had produced good effects under acidic conductions. Up to 90% 2 chlorophenol was removed after 90 minute reaction time with H 2O 2 of 25% COD Cr, in , while in UV/H 2O 2 system only 16 8% 2 chlorophenol was removed after one hour treatment. The optimal pH in this reaction occurred between pH 3 0 and pH 4.0. The reaction kinetics for photo assisted Fenton process experimented in this research was investigated. Kinetic models were proposed for the treatment of 2 chlorophenol wastewater. The reaction was found to follow the 2nd order. The equations of reaction kinetics are as follows:-d[RH]d t = K RH [RH][H 2O 2] 0exp (-K H 2O 2 t );-d[COD Cr ]d t = K COD Cr [COD Cr ][H 2O 2] 0exp(-K′ t ). The prediction of the models was found to be in a good agreement with experimental results, thus confirming the proposed reaction mechanism.
文摘This paper provides evidence for the degradation of organic pollutant by the photo-Fenton complex mechanism. Both the complex oxidation and HO. oxidation mechanisms were verified by p-chlorophenol degradation, UV/Vis spectra anaylsis, and quantum yield. The hydroxyl radical involved in the photo-Fenton process can also be generated from the decomposition of H2O2, photolysis of Fe^3+ and degradation of hydrated Fe(Ⅵ)-complex, excepting the traditional Fenton reaction.
基金Project supported partially by the Hi-Tech Research and Devel-opment Program (863) of China (No. 2002AA529182) and the Foundation of Education Ministry of China (No. 98679) andZhejiang Provincial Natural Science Foundation of China (No. 200043)
文摘A novel in-situ electrochemical oxidation method was applied to the degradation of wastewater containing chlorophenol. Under oxygen sparging, the strong oxidant, hydrogen dioxide, could be in-situ generated through the reduction of oxygen on the surface of the cathode. The removal rate ofchlorophenol could be increased 149% when oxygen was induced in the electrochemical cell. The promotion factor was estimated to be about 82.63% according to the pseudo-first-order reaction rate constant (min^-1). Important operating parameters such as current density, sparged oxygen rate were investigated. Higher sparged oxygen rate could improve the degradation of chlorophenol. To make full use of oxygen, however, sparged oxygen rate of 0.05 m3/h was adopted in this work. Oxidation-reduction potential could remarkably affect the generation of hydrogen peroxide. It was found that the removal rate of chlorophenol was not in direct proportion to the applied current density. The optimum current density was 3.5 mA/cm^2 when initial chlorophenol concentration was 100 mg/L and sparged oxygen rate was 0.05 m^3/h.
文摘A novel, simple, rapid, sensitive and highly selective flow injection procedure for the spectrophotometric determination of chlorine dioxide in the presence of other chlorine species, viz,free chlorine, chlorite, chlorate and hypochlorite, is developed. The method is based on the discoloration reaction between chlorine dioxide and chlorophenol red and can overcome the shortcomings existed in direct spectrophotometric determination for chlorine dioxide owing to the serious interference of free and combined chlorine. The procedure gave a linear calibration graph over the range 0—0.71 mg/L of chlorine dioxide. With a detection limit of 0.024 mg/L and a sample throughput of 60 samples/h.
基金financially supported by the Education Department of Liaoning Province(No.2009A421)
文摘A series of metal oxide catalysts for catalytic oxidative degradation of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) were prepared, and the supported CuO catalysts were studied particularly. The supported CuO catalysts were characterized by XRD and NH3-TPD techniques, in which CuO/γ-Al2O3 exhibited high degradation activity. The addition of Na2O or K2O into CuO/γ-Al2O3 improved the oxidative degradation of CPs remarkably, in which Na2O was more efficient than K2O. Over CuO/γ-Al2O3-Na2O, CPs were completely converted and the liberation of the inorganic chloride from 2-CP or 4-CP reached 97% or 100% respectively at 30 ?C for 2 h. The supported CuO catalysts with good dispersion of CuO particles and less acid sites were favorable for the efficient oxidative degradation of CPs. In addition, the initial pH of the reaction solution was found to be an important factor which influenced the catalytic oxidative degradation of CPs and the initial pH of 11.2 and 9.8 was preferred for the oxidative degradation of 2-CP and 4-CP respectively over CuO/γ-Al2O3 catalyst.
基金This work was supported by the National Natural Science Foundation of China (No. 20477034) and the Education Foundation of Hunan Province (No. 04C750).
文摘18 Physicochemical and quantum chemical parameters of 12 kinds of chlorophenols are calculated in this paper. QSBR (quantitative structure-biodegradability relationship) study is performed using simca statistical software by PLS regression analysis method on anaerobic biodegradation data (logKb), and the QSBR model is developed with favorable prediction. The model shows that the size and energy of the molecule are the dominant factors affecting the anaerobic biodegradation of chlorophenols. And the degradation rate constants (logKb) increase with the increase of core-core repulsion (CCR), average molecular polarizability (α), total surface area (TSA), heat of formation (HOF) and total energy (TE). while decrease with the increase of molecular connectivity index (^1X^V), relative molecular mass (Mw) and electronic energy (EE).
文摘Soil contaminated with pesticides may reduce plant development due to their toxicity. The aim of this study was to evaluate the influence on the germination of </span><i><span style="font-family:Verdana;">Zea mayz</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">Phaseolus vulgaris </span></i><span style="font-family:Verdana;">of the two main intermediates of the 2,4-D degradation, which are 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP). Maize and bean seeds were treated with distilled water (control treatment) and increased concentrations of 4-CP and 2,4-DCP (0.006, 0.1, 1.0, 1.5 g·L</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">). It was assessed seed germination and calculated various parameters. The parameter most affected by chlorophenols was the index of germination rate, being the </span><i><span style="font-family:Verdana;">P. vulgaris</span></i><span style="font-family:Verdana;"> seeds most affected. 2,4-DCP was the compound most toxic for both plants. The germination index was dependent </span><span style="font-family:Verdana;">doses for both plant models tested. The results indicate that 4-CP and</span><span style="font-family:Verdana;"> 2,4-DCP affected the index of germination rate but not influenced in other parameters of germination of </span><i><span style="font-family:Verdana;">Zea mayz</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">Phaseolus vulgaris.</span></i><span style="font-family:Verdana;"> Maize was </span><span style="font-family:Verdana;">most tolerance to both chlorophenols in the assessed concentrations. 2,4-DCP </span><span style="font-family:Verdana;">was the most toxic of chlorophenols tested.
基金the National Natural Science Foundation of China (No.20336030) the Natural Science Foundation of Tianjin(No.05YFJZJC 00500)
文摘Candida albicans PDY-07 was isolated from activated sludge under anaerobic conditions and identified as a member belonging to the genus Candida. Pure culture of C. albicans PDY-07, biodegradation of 4-chlorophenol 4-CP was carried out under anaerobic conditions in Erlenmeyer flasks at 35℃, with an initial pH of 7.0—7.2 and a starting inoculum of 10% by volume. The results showed that, under the above-mentioned con- ditions, C. albicans PDY-07 could thoroughly biodegrade 4-CP up to a concentration of 300mg·L-1 within 244h and that it had a high tolerance potential of up to 440mg·L-1 for 4-CP. With the increase in the initial concentrations of 4-CP, substrate inhibition was obviously enhanced. There was increased consumption of 4-CP, which was not assimilated by the cell for growth but was used to counteract the strong substrate inhibition. In addition, the cell growth and substrate-degradation kinetics of 4-CP as the sole source of carbon and energy for the strain in batch cultures were also investigated over a wide range of substrate concentrations 2.2—350mg·L-1, using the proposed cell growth and degradation kinetic models. The results recorded from these experiments showed that the proposed kinetic models adequately described the dynamic behavior of 4-CP biodegradation by C. albicans PDY-07.
基金Project(11JJ2031) supported by the Natural Science Fund of Hunan Province,China
文摘Fenton oxidation was used as the pretreatment of 2-chlorophenol wastewater with the objective of dechlorination, as it was considered that after breakage of aryl—Cl bond, the generated intermediates may be easily biodegraded. Hence, the optimization of pH and the low Fenton reagent doses for dechlorination was investigated. More than 99% dechlorination is obtained at the optimal pH 4 and the Fenton reagent doses of 86 mmol/L H2 O2 and 2.87 mmol/L Fe2+. The corresponding 2-chlorophenol is degraded completely, 80.02% COD is also removed, and the biodegradability, evaluated in terms of the BOD5 /COD ratio, is increased up to 0.41. To test the effect of this pretreatment, the pretreated 2-chlorophenol wastewater was fed to a sequencing batch reactor(SBR). The results show that complete mineralization is achieved. It is demonstrated that, for the treatment of recalcitrant compounds like 2-chlorophenol, the Fenton pretreatment could be quite effective and economical for enhancing the biodegradability in a Fenton-biological coupled system.
文摘Chlorophenols (2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol and 2,4, 6-trichlorophenol) may be presented in natural waters or drinking water as a result of disinfection processes involving chlorination, or as contaminants derived from domestic products, industrial operations and agricultural chemicals. A previous HPLC-UV method for determination of phenol and five chlorophenols in tap water using 4-fluoro-7-nitro-2,1,3-benzoxadiaole as a UV labeling reagent shows limited sensitivity. Here, we present an improved HPLC-fluorescence detection method for simultaneous determination of phenol and the above chlorophenols in tap water after pre-column derivatization with 3-chlorocarbonyl-6,7-dimethoxy-1-methyl-2(1H)-quino- xalinone (DMEQ-COCl), using a short, narrow column (50 × 2.1 mm i.d., packed with 5 μm particles of C18 material) to improve the sensitivity. Standard samples containing the compounds are derivatized with DMEQ-COCl in borate buffer (pH 9.0) at room temperature for 3 mins. The response is linear in the concentration range of 0.01 - 0.05 to 0.5 mg/L with r2 values ≥0.9967 for all compounds. The lower limits of detection are 0.001 to 0.008 mg/L, and the coefficients of variation are less than 8.8%. The recovery values from tap water spiked with standard samples are satisfactory. The present method is suitable for examining whether or not tap water samples are contaminated with phenol and chlorophenols in excess of regulatory values.
基金The project supported by the Key Project of Science and Technology from the Ministry of Education China (No. 00250) the project of KJCXGC-01 of Northwest Normal University, China
文摘Contact glow discharge electrolysis (CGDE) of o-chlorophenol (2-CP) was investigated under different pH, voltages and initial concentrations. And the mechanism of the oxidation was explored. The results suggested that the degradation followed the first order kinetic law; Fe2+ had a remarkable catalytic effect on the removal rate of o-chloropenol. In the presence of Fe2+, 2-CP underwent an exhaustive degradation, from which the major intermediates included o-dihydroxybenze, p-hydroxybenze, p-benzoquione and carboxlic acids.