Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t...Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.展开更多
Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive speci...Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive species,including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radical(·O_(2)^(-)),and singlet oxygen(1O_(2)),which can induce the degradation of organic contaminants.In this work,we synthesized a variety of M-OMS-2 nanorods(M=Co,Ni,Cu,Fe)by doping Co^(2+),Ni^(2+),Cu^(2+),or Fe^(3+)into manganese oxide oc-tahedral molecular sieve(OMS-2)to efficiently remove sulfamethoxazole(SMX)via PMS activation.The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed.The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2(96.40%),Co-OMS-2(88.00%),Ni-OMS-2(87.20%),Fe-OMS-2(35.00%),and OMS-2(33.50%).Then,the kinetics and struc-ture-activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated.The feasible mechanism underly-ing SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment,high-resolution mass spec-troscopy,and electron paramagnetic resonance.Results showed that SMX degradation efficiency was enhanced in seawater and tap water,demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment.展开更多
Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broile...Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broilers,but the underlying mechanisms remain unclear.The present study aimed to investigate the effect of dietary supplementation with the inorganic or organic Mn on abdominal fat deposition,and enzyme activity and gene expression involved in lipid metabolism in the abdominal fat of male or female broilers.A total of 4201-d-old AA broilers(half males and half females)were randomly allotted by body weight and gender to 1 of 6 treatments with 10 replicates cages of 7 chicks per cage in a completely randomized design involving a 3(dietary Mn addition)×2(gender)factorial arrangement.Male or female broilers were fed with the Mn-unsupplemented basal diets containing 17.52 mg Mn kg^(-1)(d 1-21)and 15.62 mg Mn kg^(-1)(d 22-42)by analysis or the basal diets supplemented with 110 mg Mn kg^(-1)(d 1-21)and 80 mg Mn kg^(-1)(d 22-42)as either the Mn sulfate or the Mn proteinate with moderate chelation strength(Mn-Prot M)for 42 d.The results showed that the interaction between dietary Mn addition and gender had no impact(P>0.05)on any of the measured parameters;abdominal fat percentage of broilers was decreased(P<0.003)by Mn addition;Mn addition increased(P<0.004)adipose triglyceride lipase(ATGL)activity,while Mn-Prot M decreased(P<0.002)the fatty acid synthase(FAS)activity in the abdominal fat of broilers compared to the control;Mn addition decreased(P<0.009)diacylglycerol acyltransferase 2(DGAT2)mRNA expression level and peroxisome proliferator-activated receptor γ(PPARγ)mRNA and protein expression levels,but up-regulated(P<0.05)the ATGL mRNA and protein expression levels in the abdominal fat of broilers.It was concluded that dietary supplementation with Mn inhibited the abdominal fat deposition of broilers possibly via decreasing the expression of PPARγand DGAT2 as well as increasing the expression and activity of ATGL in the abdominal fat of broilers,and Mn-Prot M was more effective in inhibiting the FAS acitivity.展开更多
Chemical(REE and major elements)and isotope(δ^(13)C,δ^(18)O)composition of carbonate manganese ores and manganese-bearing carbonates of the Usa deposit(Siberia,Russia)were studied.Received data on the composition of...Chemical(REE and major elements)and isotope(δ^(13)C,δ^(18)O)composition of carbonate manganese ores and manganese-bearing carbonates of the Usa deposit(Siberia,Russia)were studied.Received data on the composition of REE exhibit both the distinct negative(Ce/Ce*_(PAAS)<1)and positive(Ce/Ce*_(PAAS)>1)cerium anomalies and the positive Eu-anomaly(Eu/Eu*_(PAAS)>1).Negative Eu-anomalies are not observed.The contents of Mn,Fe,REE,and Ce-anomalies show a positive correlation with each other.Ce-anomalies and the amount of manganese and REE in relation to the carbon isotope composition(δ^(13)C)show a negative relationship and indicate that oxidized carbon of organic matter played an important role in the concentration of manganese and REE in manganese ores.The chemical and isotope composition of examined rocks indicates on secondary formation of Mnores.Two major phases and sources are distinguished in the ore-forming process characterized by diff erent chemical(REE and ore elements)and isotope composition:(i)highgrade manganese ores(with high contents of REE and light carbon isotope composition)and(ii)low-grade manganese ores(with low contents of REE and heavy carbon isotope composition).展开更多
Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials...Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials.In this work,we present an intercalation mechanism-based cathode materials for AZIB,i.e.the vanadium oxide with pre-intercalated manganese ions and lattice water(noted as MVOH).The synergistic effect between Mn^(2+)and lattice H_(2)O not only expands the interlayer spacing,but also significantly enhances the structural stability.Systematic in-situ and ex-situ characterizations clarify the Zn^(2+)/H^(+)co–(de)intercalation mechanism of MVOH in aqueous electrolyte.The demonstrated remarkable structure stability,excellent kinetic behaviors and ion-storage mechanism together enable the MVOH to demonstrate satisfactory specific capacity of 450 mA h g^(−1)at 0.2 A g^(−1),excellent rate performance of 288.8 mA h g^(−1)at 10 A g^(−1)and long cycle life over 20,000 cycles at 5 A g^(−1).This work provides a practical cathode material,and contributes to the understanding of the ion-intercalation mechanism and structural evolution of the vanadium-based cathode for AZIBs.展开更多
The in-situ oxidation of manganese sulfate solution with H2O_(2),sodium hypochlorite,potassium permanganate and oxygen as oxidants was investigated by means of SEM,EDS,XRD,BET and infrared analysis,and the effects of ...The in-situ oxidation of manganese sulfate solution with H2O_(2),sodium hypochlorite,potassium permanganate and oxygen as oxidants was investigated by means of SEM,EDS,XRD,BET and infrared analysis,and the effects of different oxidants on the morphology,phase composition,surface properties and specific surface area of manganese oxides were investigated.The experimental results show that the diameter of manganese oxide particles prepared with H_(2)O_(2)is the smallest,about 50 nm,and the specific surface area is the largest,63.8764 m^(2)/g.It has the advantages of abundant surface hydroxyl groups,no introduction of other impurities and large adsorption potential.It is most suitable to be used as an oxidant for oxidizing manganese sulfate solution to prepare manganese oxide by in-situ oxidation.Nano manganese oxide prepard by H_(2)O_(2)in-situ oxidation method is used as adsorbent to adsorb cobalt and nickel impurities in manganese sulfate.When the reaction pH is 6,the reaction time is 30min and the amount of adsorbent is 1.0 g,the adsorption rates of cobalt and nickel impurities in 100ml manganese sulfate solution are 97.59%and 97.67%,respectively.The residual amounts of cobalt and nickel meet the industrial process standard of first-class products(Co,Ni w/%≤0.005)of high-purity manganese sulfate(Hg/t4823-2015)for batteries.The study plays a guiding role in the preparation and regulation of manganese oxide,and provides a new method with high efficiency,purity and adsorbent availability for the preparation of high-purity manganese sulfate solution.展开更多
Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In thi...Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In this study,the slurry electrolysis technique was used to recover high-purity Fe powder from IREMR.The effects of IREMR and H2SO4 mass ratio,current density,reaction temper-ature,and electrolytic time on the leaching and current efficiencies of Fe were studied.According to the results,high-purity Fe powder can be recovered from the cathode plate,and the slurry electrolyte can be recycled.The leaching efficiency,current efficiency,and purity of Fe reached 92.58%,80.65%,and 98.72wt%,respectively,at a 1:2.5 mass ratio of H2SO4 and IREMR,reaction temperature of 60℃,electric current density of 30 mA/cm^(2),and reaction time of 8 h.In addition,vibrating sample magnetometer(VSM)analysis showed that the coercivity of electrolytic iron powder was 54.5 A/m,which reached the advanced magnetic grade of electrical pure-iron powder(DT4A coercivity standard).The slurry electrolytic method provides fundamental support for the industrial application of Fe resource recovery in IRMER.展开更多
The presence of toxic elements in manganese slag(MSG)poses a threat to the environment due to potential pollution.Utilizing CO_(2) curing on MS offers a promising approach to immobilize toxic substances within this ma...The presence of toxic elements in manganese slag(MSG)poses a threat to the environment due to potential pollution.Utilizing CO_(2) curing on MS offers a promising approach to immobilize toxic substances within this material,thereby mitigating their release into the natural surroundings.This study investigates the impact of CO_(2) cured MS on various rheological parameters,including slump flow,plastic viscosity(η),and yield shear stress(τ).Additionally,it assesses flexural and compressive strengths(f_(t) and f_(cu)),drying shrinkage rates(DSR),durability indicators(chloride ion migration coefficient(CMC),carbonization depth(CD)),and the leaching behavior of heavy metal elements.Microscopic examination via scanning electron microscopy(SEM)is employed to elucidate the underlying mechanisms.The results indicate that CO_(2) curing significantly enhances the slump flow of ultra-high performance concrete(UHPC)by up to 51.2%.Moreover,it reduces UHPC’sηandτby rates ranging from 0%to 52.7%and 0%to 40.2%,respectively.The DSR exhibits a linear increase corresponding to the mass ratio of CO_(2) cured MS.Furthermore,CO_(2) curing enhances both f_(t) and f_(cu) of UHPC by up to 28.7%and 17.6%,respectively.The electrical resistance is also improved,showing an increase of up to 53.7%.The relationship between mechanical strengths and electrical resistance follows a cubic relationship.The CO_(2) cured MS demonstrates a notable decrease in the CMC and CD by rates ranging from 0%to 52.6%and 0%to 26.1%,respectively.The reductions of leached chromium(Cr)and manganese(Mn)are up to 576.3%and 1312.7%,respectively.Overall,CO_(2) curing also enhances the compactness of UHPC,thereby demonstrating its potential to improve both mechanical and durability properties.展开更多
Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn ...Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn are prone to react with the hydroxyl ions in alkaline electrolyte upon electrochemical cycling and separates on the surface of spinel to reconstruct into d-MnO_(2) nanosheets irreversibly,thus results in a change of the reaction mechanism with Kþion intercalation.However,the low capacity has greatly limited its practical application.Herein,we found that the tetrahedrally-coordinated Co_(2) þions were leached when MnCo_(2)_(4) was equilibrated in 1 mol L^(-1) HCl solution,leading to the formation of layered CoOOH on MnCo_(2)_(4) surface which is originated from the covalency competition induced selective breakage of the CoT–O bond in CoT–O–CoO and subsequent rearrangement of free Co_(6) octahedra.The as-formed CoOOH is stable upon cycling in alkaline electrolyte,exhibits conversion reaction mechanism with facile proton diffusion and is free of massive structural evolution,thus enables utilization of the bulk electrode material and realizes enhanced specific capacity as well as facilitated charge transfer and ion diffusion.In general,our work not only offers a feasible approach to deliberate modification of MnCo_(2)_(4)'s surface structure,but also provides an in-depth understanding of its charge storage mechanism,which enables rational design of the spinel oxides with promising charge storage properties.展开更多
Although metal oxide-zeolite hybrid materials have long been known to achieve enhanced catalytic activity and selectivity in NO_(x)removal reactions through the inter-particle diffusion of intermediate species,their s...Although metal oxide-zeolite hybrid materials have long been known to achieve enhanced catalytic activity and selectivity in NO_(x)removal reactions through the inter-particle diffusion of intermediate species,their subsequent reaction mechanism on acid sites is still unclear and requires investigation.In this study,the distribution of Brønsted/Lewis acid sites in the hybrid materials was precisely adjusted by introducing potassium ions,which not only selectively bind to Brønsted acid sites but also potentially affect the formation and diffusion of activated NO species.Systematic in situ diffuse reflectance infrared Fourier transform spectroscopy analyses coupled with selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR)reaction demonstrate that the Lewis acid sites over MnO_(x)are more active for NO reduction but have lower selectivity to N_(2)than Brønsted acids sites.Brønsted acid sites primarily produce N_(2),whereas Lewis acid sites primarily produce N_(2)O,contributing to unfavorable N_(2)selectivity.The Brønsted acid sites present in Y zeolite,which are stronger than those on MnO_(x),accelerate the NH_(3)-SCR reaction in which the nitrite/nitrate species diffused from the MnO_(x)particles rapidly convert into the N_(2).Therefore,it is important to design the catalyst so that the activated NO species formed in MnO_(x)diffuse to and are selectively decomposed on the Brønsted acid sites of H-Y zeolite rather than that of MnO_(x)particle.For the physically mixed H-MnO_(x)+H-Y sample,the abundant Brønsted/Lewis acid sites in H-MnO_(x)give rise to significant consumption of activated NO species before their inter-particle diffusion,thereby hindering the enhancement of the synergistic effects.Furthermore,we found that the intercalated K+in K-MnO_(x)has an unexpected favorable role in the NO reduction rate,probably owing to faster diffusion of the activated NO species on K-MnO_(x)than H-MnO_(x).This study will help to design promising metal oxide-zeolite hybrid catalysts by identifying the role of the acid sites in two different constituents.展开更多
Manganese oxide ores from Gabon and Xiangxi were leached with waste tea as reductant in dilute sulfuric acid solution. The effects of waste tea dosage, concentration of sulfuric acid, liquid-to-solid ratio, leaching t...Manganese oxide ores from Gabon and Xiangxi were leached with waste tea as reductant in dilute sulfuric acid solution. The effects of waste tea dosage, concentration of sulfuric acid, liquid-to-solid ratio, leaching temperature and reaction time on leaching process were explored. The leaching efficiency of Gabonese manganese oxide ore reached almost 100% under the optimal condition which was determined as follows: manganese oxide ore to waste tea mass ratio of 10:1, sulfuric acid concentration of 2.5 molFL, liquid-to-solid ratio of 7.5:1, leaching temperature of 368 K, time of 8 h. The leaching efficiency of Xiangxi manganese oxide ore reached 99.8% under the optimal condition which was determined as follows: manganese oxide ore to waste tea mass ratio of 10:1, sulfuric acid concentration of 1.7 mol/L, liquid-to-solid ratio of 7.5:1, leaching temperature of 368 K, time of 8 h. The leaching process followed the internal diffusion controlled kinetic model, and the apparent activation energies of Gabonese manganese oxide ore and Xiangxi manganese oxide ore were calculated to be 38.2 kJ/mol and 20.4 kJ/mol, respectively. The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of XRD analysis and SEM analysis.展开更多
The separation of manganese from sulfate solutions containing 14.59 g/L Mn2+, 1.89 g/L Mg2+ and 1.54 g/L Ca2+ was preformed successfully by carbonate precipitation. The results of thermodynamic analysis and tests indi...The separation of manganese from sulfate solutions containing 14.59 g/L Mn2+, 1.89 g/L Mg2+ and 1.54 g/L Ca2+ was preformed successfully by carbonate precipitation. The results of thermodynamic analysis and tests indicate that carbonate precipitation holds better selectivity for manganese over magnesium than hydroxide precipitation and the feeding method is the most critical factor for minimizing the co-precipitation of calcium and magnesium. Furthermore, with adding MnSO4 solution to NH4HCO3 solution, the effects of the initial NH4HCO3 concentration, NH4HCO3 amount, solution pH value, reaction temperature and time on carbonate precipitation were evaluated and the optimum precipitation conditions were obtained. Under the optimum conditions, the precipitation rates of Mn2+, Ca2+ and Mg2+ are 99.75%, 5.62% and 1.43%, respectively. Moreover, the prepared manganese carbonate was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX). The results demonstrate that the product can be indexed to the rhombohedral structure of MnCO3.展开更多
The extraction of manganese from low-grade manganese oxide ores using Ca S derived from Ca SO4 as reductant was investigated. The effects of mass ratio of Ca S to ore, reduction temperature, reduction time, liquid to ...The extraction of manganese from low-grade manganese oxide ores using Ca S derived from Ca SO4 as reductant was investigated. The effects of mass ratio of Ca S to ore, reduction temperature, reduction time, liquid to solid ratio(L/S ratio), stirring speed, leaching temperature, leaching time and H2SO4 concentration on the leaching rates of Mn and Fe during the reduction–acid leaching process were discussed. The leaching rates of 96.47% for Mn and 19.24% for Fe were obtained under the optimized conditions of mass ratio of Ca S to manganese oxide ore 1:6.7, L/S ratio 5:1, stirring speed 300 r/min, reduction temperature of 95 °C for 2.0 h in the reduction process and leaching stirring speed of 200 r/min, H2SO4 concentration of 1.5 mol/L, leaching temperature of 80 °C for 5 min in the leaching process. In addition, this process can be employed in the recovery of manganese from various manganese oxide ores, and Mn leaching rate above 95% is obtained.展开更多
[Objective]The aim was to discuss the internal reason of some inherited characteristics and genetic differences of different varieties of poisoned soybeans in molecule level.[Method]Soybeans were cultivated by water c...[Objective]The aim was to discuss the internal reason of some inherited characteristics and genetic differences of different varieties of poisoned soybeans in molecule level.[Method]Soybeans were cultivated by water culture and treated for 10 days under natural light conditions.The influence of increasing concentration of manganese(0-120 mg/L) on the POD activities and isoenzyme of roots stems and leaves of soybean were studied.[Result]Results showed that the POD activities in roots,stems and leaves firstly increased and then decreased with increasing concentration of manganese.There were differences in the response of POD isoenzyme zymograms to manganese stress in different organs,the POD isoenzyme activity and quantities of soybean roots changed apparently when the manganese concentration increased,while the POD isoenzyme activity and quantities of soybean stems and leaves kept stable.[Conclusion]The isoenzyme zymograms changes of different organs of soybean were related to the resistance of soybean to manganese stress.展开更多
The influences of sodium silicate on manganese electrodeposition in sulfate solution were investigated. Manganese electrodeposition experiments indicate that a certain amount of sodium silicate can improve cathode cur...The influences of sodium silicate on manganese electrodeposition in sulfate solution were investigated. Manganese electrodeposition experiments indicate that a certain amount of sodium silicate can improve cathode current efficiency and initial pH 7.0?8.0 is the optimized pH for high cathode current efficiency. The analyses of scanning electron microscopy (SEM) and X-ray diffraction (XRD) indicate the compact morphology and nanocrystalline structure of electrodeposits. X-ray photoelectron spectrometry (XPS) analysis shows that the elements of Mn, Si and O exist in the deposit. The solution chemistry calculations of sulfate electrolyte and sodium silicate solution indicate that species of Mn2+, MnSO4, Mn(SO4)2?2 , Mn2+, MnSiO3, Mn(NH3)2+, SiO32?and HSiO3? are the main active species during the process of manganese electrodeposition. The reaction trend between Mn2+ and Si-containing ions is confirmed by the thermodynamic analysis. In addition, polarization curve tests confirm that sodium silicate can increase the overpotential of hydrogen evolution reaction, and then indirectly improve the cathode current efficiency.展开更多
Preparation of electronic grade manganese sulfate from ferromanganese slag, including grinding, leaching and purification, was studied. The impurities, such as Fe3+, Al3+, Ca2+, Mg2+, heavy metal ions and Na+, K+, wer...Preparation of electronic grade manganese sulfate from ferromanganese slag, including grinding, leaching and purification, was studied. The impurities, such as Fe3+, Al3+, Ca2+, Mg2+, heavy metal ions and Na+, K+, were removed from leaching solution by neutralized-hydrolysis, fluorination precipitation, sulfuration precipitation and re-crystallization. Effects of pH of reaction, temperature and dosage of the different additives on removal rates of the metallic ions in leaching solution were investigated, and the suitable temperature, pH and the added amount of precipitating agent were obtained. The prepared manganese sulfate product, of which the mass fractions of Ca2+, Mg2+, Na+, K+ are all smaller than 0.005%, the mass fractions of Fe3+, Al3+ and heavy metal ions are smaller than 0.001%, and the mass fraction of Mn2+ is greater than 32%, can meet the demand of anode materials of lithium-ion batteries.展开更多
In the course of the basic research on the ammonia-evaporation reaction of manganese monoxide (MnO), hydroxyl manganese chloride (Mn2(OH)3Cl) was found. The solubility and phase diagrams of the hydroxyl manganes...In the course of the basic research on the ammonia-evaporation reaction of manganese monoxide (MnO), hydroxyl manganese chloride (Mn2(OH)3Cl) was found. The solubility and phase diagrams of the hydroxyl manganese chloride were investigated. The aqueous thermostat and vibrating bed were used to determine the solubility of hydroxyl manganese chloride in water, ammonium chloride and manganese chloride system, and the phase diagrams of multicomponent system were drawn. The research results indicate that hydroxyl manganese chloride has been produced in laboratory and is in favor of the solid-liquid separation at high temperature.展开更多
A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and c...A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and catalytic properties of the copper manganese oxides was investigated using elemental analysis, nitrogen physisorption, X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduc- tion, and Oz temperature-programmed desorption combined with catalytic oxidation of CO. It was found that ammonia can selectively remove copper species from the copper manganese oxides, which correspondingly generates more defects in these oxides. An oxygen spillover from the man- ganese to the copper species was observed by H2 temperature-programmed desorption, indicating that ammonia etching enhanced the mobility of lattice oxygen species in these oxides. The Oz tem- perature-programmed desorption measurements further revealed that ammonia etching improved the ability of these oxides to release lattice oxygen. The improvement in redox properties of the copper manganese oxides following ammonia etching was associated with enhanced catalytic performance for CO oxidation.展开更多
Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carbo...Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carboxylic group content of PMA-100 and the rate of complexation reaction were measured. Effects of the mass ratio of PMA-100 to Mn(II) (n), pH, background electrolyte, etc on the rejection rate (R) and permeate flux (J) were investigated. The results show that carboxylic group content of PMA-100 is 9.5 mmol/g. The complexation of Mn(II) with PMA-100 is rapid and completed within 5 min at pH 6.0. Both R and J increase with pH increasing in the range of 2.5-7.0, and R increases with the increase of n at pH 6.0 while J is little affected. The background electrolyte leads to the decrease of R, and CaCl2 has much greater effect on R than NaCl at the same ionic strength.展开更多
Copper is difficult to separate from nickel electrolyte due to low concentration of copper (0.53 g/L) with high concentration of nickel (75 g/L). Manganese sulfide (MnS) was used to deeply remove copper from the elect...Copper is difficult to separate from nickel electrolyte due to low concentration of copper (0.53 g/L) with high concentration of nickel (75 g/L). Manganese sulfide (MnS) was used to deeply remove copper from the electrolyte. Experimental results show that the concentration of copper (ρ(Cu)) decreases from 530 to 3 mg/L and the mass ratio of copper to nickel (RCu/Ni) in the residue reaches above 15 when the MnS dosage is 1.4 times the theoretical valueDt,MnS (Dt,MnS=0.74 g) and the pH value of electrolyte is 4?5 with reaction time more than 60 min at temperatures above 60 °C. The concentration of newly generated Mn2+(ρ(Mn)) in the solution is also reduced to 3 mg/L by the oxidation reaction. The values ofρ(Cu),ρ(Mn)andRCu/Ni meet the requirements of copper removal from the electrolyte. It is shown that MnS can be considered a highly effective decoppering reagent.展开更多
基金funds from the National Natural Science Foundation of China(51772082 and 51804106)the Natural Science Foundation of Hunan Province(2023JJ10005)
文摘Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.
基金supported by the National Natural Science Foundation of China(Nos.21972073,22136003,22206188,and 21805166).
文摘Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive species,including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radical(·O_(2)^(-)),and singlet oxygen(1O_(2)),which can induce the degradation of organic contaminants.In this work,we synthesized a variety of M-OMS-2 nanorods(M=Co,Ni,Cu,Fe)by doping Co^(2+),Ni^(2+),Cu^(2+),or Fe^(3+)into manganese oxide oc-tahedral molecular sieve(OMS-2)to efficiently remove sulfamethoxazole(SMX)via PMS activation.The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed.The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2(96.40%),Co-OMS-2(88.00%),Ni-OMS-2(87.20%),Fe-OMS-2(35.00%),and OMS-2(33.50%).Then,the kinetics and struc-ture-activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated.The feasible mechanism underly-ing SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment,high-resolution mass spec-troscopy,and electron paramagnetic resonance.Results showed that SMX degradation efficiency was enhanced in seawater and tap water,demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment.
基金financially supported by the National Natural Science Foundation of China(32102559)the Jiangsu Shuang Chuang Tuan Dui Program,China(JSSCTD202147)the Jiangsu Shuang Chuang Ren Cai Program,China(JSSCRC2021541)。
文摘Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broilers,but the underlying mechanisms remain unclear.The present study aimed to investigate the effect of dietary supplementation with the inorganic or organic Mn on abdominal fat deposition,and enzyme activity and gene expression involved in lipid metabolism in the abdominal fat of male or female broilers.A total of 4201-d-old AA broilers(half males and half females)were randomly allotted by body weight and gender to 1 of 6 treatments with 10 replicates cages of 7 chicks per cage in a completely randomized design involving a 3(dietary Mn addition)×2(gender)factorial arrangement.Male or female broilers were fed with the Mn-unsupplemented basal diets containing 17.52 mg Mn kg^(-1)(d 1-21)and 15.62 mg Mn kg^(-1)(d 22-42)by analysis or the basal diets supplemented with 110 mg Mn kg^(-1)(d 1-21)and 80 mg Mn kg^(-1)(d 22-42)as either the Mn sulfate or the Mn proteinate with moderate chelation strength(Mn-Prot M)for 42 d.The results showed that the interaction between dietary Mn addition and gender had no impact(P>0.05)on any of the measured parameters;abdominal fat percentage of broilers was decreased(P<0.003)by Mn addition;Mn addition increased(P<0.004)adipose triglyceride lipase(ATGL)activity,while Mn-Prot M decreased(P<0.002)the fatty acid synthase(FAS)activity in the abdominal fat of broilers compared to the control;Mn addition decreased(P<0.009)diacylglycerol acyltransferase 2(DGAT2)mRNA expression level and peroxisome proliferator-activated receptor γ(PPARγ)mRNA and protein expression levels,but up-regulated(P<0.05)the ATGL mRNA and protein expression levels in the abdominal fat of broilers.It was concluded that dietary supplementation with Mn inhibited the abdominal fat deposition of broilers possibly via decreasing the expression of PPARγand DGAT2 as well as increasing the expression and activity of ATGL in the abdominal fat of broilers,and Mn-Prot M was more effective in inhibiting the FAS acitivity.
基金accomplished in accordance with the Research Program of the Geological Institute of the Russian Academy of Sciences。
文摘Chemical(REE and major elements)and isotope(δ^(13)C,δ^(18)O)composition of carbonate manganese ores and manganese-bearing carbonates of the Usa deposit(Siberia,Russia)were studied.Received data on the composition of REE exhibit both the distinct negative(Ce/Ce*_(PAAS)<1)and positive(Ce/Ce*_(PAAS)>1)cerium anomalies and the positive Eu-anomaly(Eu/Eu*_(PAAS)>1).Negative Eu-anomalies are not observed.The contents of Mn,Fe,REE,and Ce-anomalies show a positive correlation with each other.Ce-anomalies and the amount of manganese and REE in relation to the carbon isotope composition(δ^(13)C)show a negative relationship and indicate that oxidized carbon of organic matter played an important role in the concentration of manganese and REE in manganese ores.The chemical and isotope composition of examined rocks indicates on secondary formation of Mnores.Two major phases and sources are distinguished in the ore-forming process characterized by diff erent chemical(REE and ore elements)and isotope composition:(i)highgrade manganese ores(with high contents of REE and light carbon isotope composition)and(ii)low-grade manganese ores(with low contents of REE and heavy carbon isotope composition).
基金supported by the grants from the Chinese Academy of Sciences(124GJHZ2023031MI)the National Natural Science Foundation of China(52173274)+1 种基金the National Key R&D Project from the Ministry of Science and Technology(2021YFA1201603)the Fundamental Research Funds for the Central Universities.
文摘Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials.In this work,we present an intercalation mechanism-based cathode materials for AZIB,i.e.the vanadium oxide with pre-intercalated manganese ions and lattice water(noted as MVOH).The synergistic effect between Mn^(2+)and lattice H_(2)O not only expands the interlayer spacing,but also significantly enhances the structural stability.Systematic in-situ and ex-situ characterizations clarify the Zn^(2+)/H^(+)co–(de)intercalation mechanism of MVOH in aqueous electrolyte.The demonstrated remarkable structure stability,excellent kinetic behaviors and ion-storage mechanism together enable the MVOH to demonstrate satisfactory specific capacity of 450 mA h g^(−1)at 0.2 A g^(−1),excellent rate performance of 288.8 mA h g^(−1)at 10 A g^(−1)and long cycle life over 20,000 cycles at 5 A g^(−1).This work provides a practical cathode material,and contributes to the understanding of the ion-intercalation mechanism and structural evolution of the vanadium-based cathode for AZIBs.
基金Funded by the National Natural Science Foundation of China(No.51864012)the Key Projects Supported by Science and Technology in Guizhou Province(No.[2002]KEY020)+2 种基金the Major Special Projects in Guizhou Province(No.[2022]003)the Guizhou Provincial Science Cooperation Program(Nos.[2016]5302,[2017]5788,[2018]5781,[2019]1411,and[2019]2841)the Major Special Projects in Tongren City,Guizhou Province(No.[2021]13)。
文摘The in-situ oxidation of manganese sulfate solution with H2O_(2),sodium hypochlorite,potassium permanganate and oxygen as oxidants was investigated by means of SEM,EDS,XRD,BET and infrared analysis,and the effects of different oxidants on the morphology,phase composition,surface properties and specific surface area of manganese oxides were investigated.The experimental results show that the diameter of manganese oxide particles prepared with H_(2)O_(2)is the smallest,about 50 nm,and the specific surface area is the largest,63.8764 m^(2)/g.It has the advantages of abundant surface hydroxyl groups,no introduction of other impurities and large adsorption potential.It is most suitable to be used as an oxidant for oxidizing manganese sulfate solution to prepare manganese oxide by in-situ oxidation.Nano manganese oxide prepard by H_(2)O_(2)in-situ oxidation method is used as adsorbent to adsorb cobalt and nickel impurities in manganese sulfate.When the reaction pH is 6,the reaction time is 30min and the amount of adsorbent is 1.0 g,the adsorption rates of cobalt and nickel impurities in 100ml manganese sulfate solution are 97.59%and 97.67%,respectively.The residual amounts of cobalt and nickel meet the industrial process standard of first-class products(Co,Ni w/%≤0.005)of high-purity manganese sulfate(Hg/t4823-2015)for batteries.The study plays a guiding role in the preparation and regulation of manganese oxide,and provides a new method with high efficiency,purity and adsorbent availability for the preparation of high-purity manganese sulfate solution.
基金supported by the Key Research and Development Program of Guangxi Province,China (No.AB23075174)the National Natural Science Foundation of China (No.52174386)the Science and Technology Plan Project of Sichuan Province,China (No.2022YFS0459).
文摘Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In this study,the slurry electrolysis technique was used to recover high-purity Fe powder from IREMR.The effects of IREMR and H2SO4 mass ratio,current density,reaction temper-ature,and electrolytic time on the leaching and current efficiencies of Fe were studied.According to the results,high-purity Fe powder can be recovered from the cathode plate,and the slurry electrolyte can be recycled.The leaching efficiency,current efficiency,and purity of Fe reached 92.58%,80.65%,and 98.72wt%,respectively,at a 1:2.5 mass ratio of H2SO4 and IREMR,reaction temperature of 60℃,electric current density of 30 mA/cm^(2),and reaction time of 8 h.In addition,vibrating sample magnetometer(VSM)analysis showed that the coercivity of electrolytic iron powder was 54.5 A/m,which reached the advanced magnetic grade of electrical pure-iron powder(DT4A coercivity standard).The slurry electrolytic method provides fundamental support for the industrial application of Fe resource recovery in IRMER.
基金supported by Hebei Province Higher Education Science and Technology Research Project(No.ZC2024031).
文摘The presence of toxic elements in manganese slag(MSG)poses a threat to the environment due to potential pollution.Utilizing CO_(2) curing on MS offers a promising approach to immobilize toxic substances within this material,thereby mitigating their release into the natural surroundings.This study investigates the impact of CO_(2) cured MS on various rheological parameters,including slump flow,plastic viscosity(η),and yield shear stress(τ).Additionally,it assesses flexural and compressive strengths(f_(t) and f_(cu)),drying shrinkage rates(DSR),durability indicators(chloride ion migration coefficient(CMC),carbonization depth(CD)),and the leaching behavior of heavy metal elements.Microscopic examination via scanning electron microscopy(SEM)is employed to elucidate the underlying mechanisms.The results indicate that CO_(2) curing significantly enhances the slump flow of ultra-high performance concrete(UHPC)by up to 51.2%.Moreover,it reduces UHPC’sηandτby rates ranging from 0%to 52.7%and 0%to 40.2%,respectively.The DSR exhibits a linear increase corresponding to the mass ratio of CO_(2) cured MS.Furthermore,CO_(2) curing enhances both f_(t) and f_(cu) of UHPC by up to 28.7%and 17.6%,respectively.The electrical resistance is also improved,showing an increase of up to 53.7%.The relationship between mechanical strengths and electrical resistance follows a cubic relationship.The CO_(2) cured MS demonstrates a notable decrease in the CMC and CD by rates ranging from 0%to 52.6%and 0%to 26.1%,respectively.The reductions of leached chromium(Cr)and manganese(Mn)are up to 576.3%and 1312.7%,respectively.Overall,CO_(2) curing also enhances the compactness of UHPC,thereby demonstrating its potential to improve both mechanical and durability properties.
基金supported by the National Key Research and Development Program of China(2022YFE0206300)the National Natural Science Foundation of China(22209047,U21A2081,22075074)+2 种基金Natural Science Foundation of Hunan Province(2020JJ5035)Hunan Provincial Department of Education Outstanding Youth Project(23B0037)Macao Science and Technology Development Fund(Macao SAR,FDCT-0096/2020/A2).
文摘Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn are prone to react with the hydroxyl ions in alkaline electrolyte upon electrochemical cycling and separates on the surface of spinel to reconstruct into d-MnO_(2) nanosheets irreversibly,thus results in a change of the reaction mechanism with Kþion intercalation.However,the low capacity has greatly limited its practical application.Herein,we found that the tetrahedrally-coordinated Co_(2) þions were leached when MnCo_(2)_(4) was equilibrated in 1 mol L^(-1) HCl solution,leading to the formation of layered CoOOH on MnCo_(2)_(4) surface which is originated from the covalency competition induced selective breakage of the CoT–O bond in CoT–O–CoO and subsequent rearrangement of free Co_(6) octahedra.The as-formed CoOOH is stable upon cycling in alkaline electrolyte,exhibits conversion reaction mechanism with facile proton diffusion and is free of massive structural evolution,thus enables utilization of the bulk electrode material and realizes enhanced specific capacity as well as facilitated charge transfer and ion diffusion.In general,our work not only offers a feasible approach to deliberate modification of MnCo_(2)_(4)'s surface structure,but also provides an in-depth understanding of its charge storage mechanism,which enables rational design of the spinel oxides with promising charge storage properties.
文摘Although metal oxide-zeolite hybrid materials have long been known to achieve enhanced catalytic activity and selectivity in NO_(x)removal reactions through the inter-particle diffusion of intermediate species,their subsequent reaction mechanism on acid sites is still unclear and requires investigation.In this study,the distribution of Brønsted/Lewis acid sites in the hybrid materials was precisely adjusted by introducing potassium ions,which not only selectively bind to Brønsted acid sites but also potentially affect the formation and diffusion of activated NO species.Systematic in situ diffuse reflectance infrared Fourier transform spectroscopy analyses coupled with selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR)reaction demonstrate that the Lewis acid sites over MnO_(x)are more active for NO reduction but have lower selectivity to N_(2)than Brønsted acids sites.Brønsted acid sites primarily produce N_(2),whereas Lewis acid sites primarily produce N_(2)O,contributing to unfavorable N_(2)selectivity.The Brønsted acid sites present in Y zeolite,which are stronger than those on MnO_(x),accelerate the NH_(3)-SCR reaction in which the nitrite/nitrate species diffused from the MnO_(x)particles rapidly convert into the N_(2).Therefore,it is important to design the catalyst so that the activated NO species formed in MnO_(x)diffuse to and are selectively decomposed on the Brønsted acid sites of H-Y zeolite rather than that of MnO_(x)particle.For the physically mixed H-MnO_(x)+H-Y sample,the abundant Brønsted/Lewis acid sites in H-MnO_(x)give rise to significant consumption of activated NO species before their inter-particle diffusion,thereby hindering the enhancement of the synergistic effects.Furthermore,we found that the intercalated K+in K-MnO_(x)has an unexpected favorable role in the NO reduction rate,probably owing to faster diffusion of the activated NO species on K-MnO_(x)than H-MnO_(x).This study will help to design promising metal oxide-zeolite hybrid catalysts by identifying the role of the acid sites in two different constituents.
基金Project(2010FJ1011)supported by the Major Project of Hunan Science and Technology,ChinaProject(cstc2012ggB90002)supported by the Chongqing Key Science and Technology Program,China
文摘Manganese oxide ores from Gabon and Xiangxi were leached with waste tea as reductant in dilute sulfuric acid solution. The effects of waste tea dosage, concentration of sulfuric acid, liquid-to-solid ratio, leaching temperature and reaction time on leaching process were explored. The leaching efficiency of Gabonese manganese oxide ore reached almost 100% under the optimal condition which was determined as follows: manganese oxide ore to waste tea mass ratio of 10:1, sulfuric acid concentration of 2.5 molFL, liquid-to-solid ratio of 7.5:1, leaching temperature of 368 K, time of 8 h. The leaching efficiency of Xiangxi manganese oxide ore reached 99.8% under the optimal condition which was determined as follows: manganese oxide ore to waste tea mass ratio of 10:1, sulfuric acid concentration of 1.7 mol/L, liquid-to-solid ratio of 7.5:1, leaching temperature of 368 K, time of 8 h. The leaching process followed the internal diffusion controlled kinetic model, and the apparent activation energies of Gabonese manganese oxide ore and Xiangxi manganese oxide ore were calculated to be 38.2 kJ/mol and 20.4 kJ/mol, respectively. The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of XRD analysis and SEM analysis.
基金Project(51374249)supported by the National Natural Science Foundation of China
文摘The separation of manganese from sulfate solutions containing 14.59 g/L Mn2+, 1.89 g/L Mg2+ and 1.54 g/L Ca2+ was preformed successfully by carbonate precipitation. The results of thermodynamic analysis and tests indicate that carbonate precipitation holds better selectivity for manganese over magnesium than hydroxide precipitation and the feeding method is the most critical factor for minimizing the co-precipitation of calcium and magnesium. Furthermore, with adding MnSO4 solution to NH4HCO3 solution, the effects of the initial NH4HCO3 concentration, NH4HCO3 amount, solution pH value, reaction temperature and time on carbonate precipitation were evaluated and the optimum precipitation conditions were obtained. Under the optimum conditions, the precipitation rates of Mn2+, Ca2+ and Mg2+ are 99.75%, 5.62% and 1.43%, respectively. Moreover, the prepared manganese carbonate was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX). The results demonstrate that the product can be indexed to the rhombohedral structure of MnCO3.
基金Project(21376273)supported by the National Natural Science Foundation of ChinaProject(2010FJ1011)supported by the Key Program of Science and Technology of Hunan Province,China
文摘The extraction of manganese from low-grade manganese oxide ores using Ca S derived from Ca SO4 as reductant was investigated. The effects of mass ratio of Ca S to ore, reduction temperature, reduction time, liquid to solid ratio(L/S ratio), stirring speed, leaching temperature, leaching time and H2SO4 concentration on the leaching rates of Mn and Fe during the reduction–acid leaching process were discussed. The leaching rates of 96.47% for Mn and 19.24% for Fe were obtained under the optimized conditions of mass ratio of Ca S to manganese oxide ore 1:6.7, L/S ratio 5:1, stirring speed 300 r/min, reduction temperature of 95 °C for 2.0 h in the reduction process and leaching stirring speed of 200 r/min, H2SO4 concentration of 1.5 mol/L, leaching temperature of 80 °C for 5 min in the leaching process. In addition, this process can be employed in the recovery of manganese from various manganese oxide ores, and Mn leaching rate above 95% is obtained.
基金Supported by Tianshui Normal University Science Study Fund(TSA0624)~~
文摘[Objective]The aim was to discuss the internal reason of some inherited characteristics and genetic differences of different varieties of poisoned soybeans in molecule level.[Method]Soybeans were cultivated by water culture and treated for 10 days under natural light conditions.The influence of increasing concentration of manganese(0-120 mg/L) on the POD activities and isoenzyme of roots stems and leaves of soybean were studied.[Result]Results showed that the POD activities in roots,stems and leaves firstly increased and then decreased with increasing concentration of manganese.There were differences in the response of POD isoenzyme zymograms to manganese stress in different organs,the POD isoenzyme activity and quantities of soybean roots changed apparently when the manganese concentration increased,while the POD isoenzyme activity and quantities of soybean stems and leaves kept stable.[Conclusion]The isoenzyme zymograms changes of different organs of soybean were related to the resistance of soybean to manganese stress.
基金Project(2015BAB17B01)supported by the National Science and Technology Support Program of ChinaProject(21376273)supported by the National Natural Science Foundation of China
文摘The influences of sodium silicate on manganese electrodeposition in sulfate solution were investigated. Manganese electrodeposition experiments indicate that a certain amount of sodium silicate can improve cathode current efficiency and initial pH 7.0?8.0 is the optimized pH for high cathode current efficiency. The analyses of scanning electron microscopy (SEM) and X-ray diffraction (XRD) indicate the compact morphology and nanocrystalline structure of electrodeposits. X-ray photoelectron spectrometry (XPS) analysis shows that the elements of Mn, Si and O exist in the deposit. The solution chemistry calculations of sulfate electrolyte and sodium silicate solution indicate that species of Mn2+, MnSO4, Mn(SO4)2?2 , Mn2+, MnSiO3, Mn(NH3)2+, SiO32?and HSiO3? are the main active species during the process of manganese electrodeposition. The reaction trend between Mn2+ and Si-containing ions is confirmed by the thermodynamic analysis. In addition, polarization curve tests confirm that sodium silicate can increase the overpotential of hydrogen evolution reaction, and then indirectly improve the cathode current efficiency.
基金Project(2013ZX0754-001)supported by China National Critical Project for Science and Technology on Water Pollution Prevention and Control
文摘Preparation of electronic grade manganese sulfate from ferromanganese slag, including grinding, leaching and purification, was studied. The impurities, such as Fe3+, Al3+, Ca2+, Mg2+, heavy metal ions and Na+, K+, were removed from leaching solution by neutralized-hydrolysis, fluorination precipitation, sulfuration precipitation and re-crystallization. Effects of pH of reaction, temperature and dosage of the different additives on removal rates of the metallic ions in leaching solution were investigated, and the suitable temperature, pH and the added amount of precipitating agent were obtained. The prepared manganese sulfate product, of which the mass fractions of Ca2+, Mg2+, Na+, K+ are all smaller than 0.005%, the mass fractions of Fe3+, Al3+ and heavy metal ions are smaller than 0.001%, and the mass fraction of Mn2+ is greater than 32%, can meet the demand of anode materials of lithium-ion batteries.
基金Project (062702) supported by Innovation Funds of Institute of Process Engineering,Chinese Academy of Sciences
文摘In the course of the basic research on the ammonia-evaporation reaction of manganese monoxide (MnO), hydroxyl manganese chloride (Mn2(OH)3Cl) was found. The solubility and phase diagrams of the hydroxyl manganese chloride were investigated. The aqueous thermostat and vibrating bed were used to determine the solubility of hydroxyl manganese chloride in water, ammonium chloride and manganese chloride system, and the phase diagrams of multicomponent system were drawn. The research results indicate that hydroxyl manganese chloride has been produced in laboratory and is in favor of the solid-liquid separation at high temperature.
基金supported by the National Basic Research Program of China (973 Program,2013CB934104)the China Postdoctoral Science Foundation(2014M560202)~~
文摘A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and catalytic properties of the copper manganese oxides was investigated using elemental analysis, nitrogen physisorption, X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduc- tion, and Oz temperature-programmed desorption combined with catalytic oxidation of CO. It was found that ammonia can selectively remove copper species from the copper manganese oxides, which correspondingly generates more defects in these oxides. An oxygen spillover from the man- ganese to the copper species was observed by H2 temperature-programmed desorption, indicating that ammonia etching enhanced the mobility of lattice oxygen species in these oxides. The Oz tem- perature-programmed desorption measurements further revealed that ammonia etching improved the ability of these oxides to release lattice oxygen. The improvement in redox properties of the copper manganese oxides following ammonia etching was associated with enhanced catalytic performance for CO oxidation.
基金Project (21176264) supported by the National Natural Science Foundation of ChinaProject (11JJ2010) supported by Hunan Provincial Natural Science Foundation of ChinaProject (LC13076) supported by Undergraduate Innovation Foundation of Central South University,China
文摘Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carboxylic group content of PMA-100 and the rate of complexation reaction were measured. Effects of the mass ratio of PMA-100 to Mn(II) (n), pH, background electrolyte, etc on the rejection rate (R) and permeate flux (J) were investigated. The results show that carboxylic group content of PMA-100 is 9.5 mmol/g. The complexation of Mn(II) with PMA-100 is rapid and completed within 5 min at pH 6.0. Both R and J increase with pH increasing in the range of 2.5-7.0, and R increases with the increase of n at pH 6.0 while J is little affected. The background electrolyte leads to the decrease of R, and CaCl2 has much greater effect on R than NaCl at the same ionic strength.
基金Project(51104183)supported by the National Natural Science Foundation of ChinaProject supported by the China Scholarship Council
文摘Copper is difficult to separate from nickel electrolyte due to low concentration of copper (0.53 g/L) with high concentration of nickel (75 g/L). Manganese sulfide (MnS) was used to deeply remove copper from the electrolyte. Experimental results show that the concentration of copper (ρ(Cu)) decreases from 530 to 3 mg/L and the mass ratio of copper to nickel (RCu/Ni) in the residue reaches above 15 when the MnS dosage is 1.4 times the theoretical valueDt,MnS (Dt,MnS=0.74 g) and the pH value of electrolyte is 4?5 with reaction time more than 60 min at temperatures above 60 °C. The concentration of newly generated Mn2+(ρ(Mn)) in the solution is also reduced to 3 mg/L by the oxidation reaction. The values ofρ(Cu),ρ(Mn)andRCu/Ni meet the requirements of copper removal from the electrolyte. It is shown that MnS can be considered a highly effective decoppering reagent.