Whether M3 cholinergic receptor signal transduction pathway is involved in regulation of the activation of NF-κB and the expression of chemokine MOB-1, MCP-1genes in pancreatic acinar cells was investigated. Rat panc...Whether M3 cholinergic receptor signal transduction pathway is involved in regulation of the activation of NF-κB and the expression of chemokine MOB-1, MCP-1genes in pancreatic acinar cells was investigated. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, atropine and PDTC in vitro. The MOB-1 and MCP-1 mRNA expression was detected by using RT-PCR. The activation of NF-κB was monitored by using electrophoretic mobility shift assay. The results showed that as compared with control group, M3 cholinergic receptor agonist (10 -3 mol/L, 10 -4 mol/L carbachol) could induce a concentration-dependent and time-dependent increase in the expression of MOB-1, MCP-1 mRNA in pancreatic acinar cells. After treatment with 10 -3 mol/L carbachol for 2 h, the expression of MOB-1, MCP-1 mRNA was strongest. The activity of NF-κB in pancreatic acinar cells was significantly increased (P<0.01) after treated with M3 cholinergic receptor agonist (10 -3 mol/L carbachol) in vitro for 30 min. Either M3 cholinergic receptor antagonist (10 -5 mol/L atropine) or NF-κB inhibitor (10 -2 mol/L PDTC) could obviously inhibit the activation of NF-κB and the chemokine MOB-1, MCP-1 mRNA expression induced by carbachol (P<0.05). This inhibitory effect was significantly increased by atropine plus PDTC (P<0.01). The results of these studies indicated that M3 cholinergic receptor signal transduction pathway was likely involved in regulation of the expression of chemokine MOB-1 and MCP-1genes in pancreatic acinar cells in vitro through the activation of NF-κB.展开更多
Objectives To explore the relationship between serum autoantibodies against myocardial β1-adrenergic, M2-cholinergic receptors and chronic Keshan disease (CKD). Methods The second extracellular loops of β1 and...Objectives To explore the relationship between serum autoantibodies against myocardial β1-adrenergic, M2-cholinergic receptors and chronic Keshan disease (CKD). Methods The second extracellular loops of β1 and M2 receptors on human cardiomyocytes were used as the antigens. Enzyme linked immunosorbent assay (ELISA) was applied to determine serum autoantibodies against myocardial β1 and ME receptors in 32 CKD patients. 31 healthy subjects from endemic area were selected as the control. Results Positive rate of autoantibodies against myocardial β1 adrenergic (51.3%, 17/32) and M2 cholinergic (56.3% , 18/32) receptors were significantly higher than those in the control (9.7%, 3/ 31; 12.9%, 4/31) (both P〈 0.01). Both positive rate and titers of above autoantibodies in NYHA Ⅱ - Ⅲ CKD patients were significantly higher than those in NYHA Ⅳ, demonstrating an apparently positive correlation between serum antibodies against myocardial β1 and M2 receptors (r=0.95). Conclusions Autoantibodies against myocardial β1 and M2 receptors were found in sera of CKD patients; distribution of positive rate and titers of the autoantibodies in CKD patients in various NYHA are significantly different. classes of cardiac function展开更多
文摘Whether M3 cholinergic receptor signal transduction pathway is involved in regulation of the activation of NF-κB and the expression of chemokine MOB-1, MCP-1genes in pancreatic acinar cells was investigated. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, atropine and PDTC in vitro. The MOB-1 and MCP-1 mRNA expression was detected by using RT-PCR. The activation of NF-κB was monitored by using electrophoretic mobility shift assay. The results showed that as compared with control group, M3 cholinergic receptor agonist (10 -3 mol/L, 10 -4 mol/L carbachol) could induce a concentration-dependent and time-dependent increase in the expression of MOB-1, MCP-1 mRNA in pancreatic acinar cells. After treatment with 10 -3 mol/L carbachol for 2 h, the expression of MOB-1, MCP-1 mRNA was strongest. The activity of NF-κB in pancreatic acinar cells was significantly increased (P<0.01) after treated with M3 cholinergic receptor agonist (10 -3 mol/L carbachol) in vitro for 30 min. Either M3 cholinergic receptor antagonist (10 -5 mol/L atropine) or NF-κB inhibitor (10 -2 mol/L PDTC) could obviously inhibit the activation of NF-κB and the chemokine MOB-1, MCP-1 mRNA expression induced by carbachol (P<0.05). This inhibitory effect was significantly increased by atropine plus PDTC (P<0.01). The results of these studies indicated that M3 cholinergic receptor signal transduction pathway was likely involved in regulation of the expression of chemokine MOB-1 and MCP-1genes in pancreatic acinar cells in vitro through the activation of NF-κB.
文摘Objectives To explore the relationship between serum autoantibodies against myocardial β1-adrenergic, M2-cholinergic receptors and chronic Keshan disease (CKD). Methods The second extracellular loops of β1 and M2 receptors on human cardiomyocytes were used as the antigens. Enzyme linked immunosorbent assay (ELISA) was applied to determine serum autoantibodies against myocardial β1 and ME receptors in 32 CKD patients. 31 healthy subjects from endemic area were selected as the control. Results Positive rate of autoantibodies against myocardial β1 adrenergic (51.3%, 17/32) and M2 cholinergic (56.3% , 18/32) receptors were significantly higher than those in the control (9.7%, 3/ 31; 12.9%, 4/31) (both P〈 0.01). Both positive rate and titers of above autoantibodies in NYHA Ⅱ - Ⅲ CKD patients were significantly higher than those in NYHA Ⅳ, demonstrating an apparently positive correlation between serum antibodies against myocardial β1 and M2 receptors (r=0.95). Conclusions Autoantibodies against myocardial β1 and M2 receptors were found in sera of CKD patients; distribution of positive rate and titers of the autoantibodies in CKD patients in various NYHA are significantly different. classes of cardiac function