Copper possesses very strong chacophile properties,but under the conditions found in meteorites,its behavior is like that of siderophile elements.The Suizhou meteorite is a highly shocked L6 chondrite.Troilite and tae...Copper possesses very strong chacophile properties,but under the conditions found in meteorites,its behavior is like that of siderophile elements.The Suizhou meteorite is a highly shocked L6 chondrite.Troilite and taenite are considered the main primary carrier of copper in this meteorite,and the post-shock thermal episode is considered the main reason that elemental Cu migrates from its original host phase and forms metallic grains.The Suizhou meteorite contains a few very thin shock melt veins.The occurrence and behavior of metallic copper in this meteorite were studied by optical microscopic examination,electron microprobe analyses,and high-resolution X-ray elemental intensity mapping.Our results show that metallic copper is abundant in the Suizhou chondritic rock.Metallic copper grains adjacent to small troilite grains inside FeNi metal are the most common occurrence,and those at the FeNi metal–troilite interface are the second most common case.The metallic copper grains occurring at the interface of FeNi metal/troililte and silicate are rather rare.Metallic copper grains are not observed within the Suizhou shock veins,Instead,Cu in elemental form is transferred through shock metamorphism into FeNi metal+troilite intergrowths.Four diff erent occurrence types of Cu in the FeNi metal+troilite intergrowths have been identifi ed:the concentrations of Cu in the FeNi+FeS intergrowths for four occurrence types are rather close,we estimate it might be lower than 1 wt%.展开更多
The Jilin H5 chondrite, the largest known stony meteorite in the world, with its No.1 fragment weighing1770 kg. It contains submillimeter-to centimeter-sized FeNi metal particles/nodules. Our optical microscopic and e...The Jilin H5 chondrite, the largest known stony meteorite in the world, with its No.1 fragment weighing1770 kg. It contains submillimeter-to centimeter-sized FeNi metal particles/nodules. Our optical microscopic and electron microprobe analyses revealed that the formation of metal nodules in this meteorite is a complex and long-term process, The early stage is the thermal diffusion-caused migration and concentration of dispersed metallic material along fractures to form root-hair shaped metal grains during thermal metamorphism of this meteorite. The later two collision events experienced by this meteorite led to the further migration and aggregation of metallic material into the shock-produced cracks and openings to form largersized metal grains. The shock-produced shear movement and frictional heating occurred in this meteorite greatly enhanced the migration and aggregation of metallic material to form the large-sized nodules. It was revealed that the metal nodule formation process in the Jilin H5 chondrite might perform in the solid or subsolidus state, and neither melting of chondritic metal grains nor shock-induced vaporization of bulk chondrite material are related with this process.展开更多
The Suizhou meteorite is a heavily shocked and melted vein-containing L6 chondrite.It contains a minor amount of diopside with a(Ca_(0.419)Mg_(0.466)Fe_(0.088))SiO_(3)composition,and a shock-metamorphosed diopside gra...The Suizhou meteorite is a heavily shocked and melted vein-containing L6 chondrite.It contains a minor amount of diopside with a(Ca_(0.419)Mg_(0.466)Fe_(0.088))SiO_(3)composition,and a shock-metamorphosed diopside grain associated with ringwoodite and lingunite was found in a melt vein of this meteorite.Our electron microprobe,transmission electron microscopic and Raman spectroscopic analyses revealed four silicate phases with different compositions and structures inside this shock-metamorphosed diopside grain,termed phase A,B,C and D in this paper.Phase A is identified as orthorhombic(Ca_(0.663)-Mg_(0.314))SiO_(3)-perovskite which is closely associated with phase B,the vitrified(Mg_(0.642)Ca_(0.290)Fe_(0.098))SiO_(3)perovskite.Phase D is assigned to be(Mg_(0.578)Ca_(0.414))SiO_(3)majorite which is associated with phase C,the vetrified Carich Mg-perovskite with a(Mg_(0.853)Ca_(0.167))SiO_(3)composition.Based on high-pressure and high-temperature experiments,the diopside grain in the melt vein of the Suizhou meteorite would have experienced a P–T regime of 20–24GPa and 1800–>2000℃.Such P–T conditions are high enough for the decomposition of the diopside and the formation of four different silicate phases.The orthorhombic(Ca_(0.663)Mg_(0.314))SiO_(3)perovskite found in the Suizhou L6 chondrite might be considered as the third lower-mantle silicate mineral after bridgmanite and davemaoite after the detailed analyses of its crystal structure and physical properties being completed.展开更多
The study of the mineral and organic content of the Allende meteorite is important for our understanding of the molecular evolution of the universe as well as the ancient Earth. Previous studies have characterized the...The study of the mineral and organic content of the Allende meteorite is important for our understanding of the molecular evolution of the universe as well as the ancient Earth. Previous studies have characterized the magnetic minerals present in ordinary and carbonaceous chondrites, providing information on the evolution of magnetic fields. The interaction of organic compounds with magnetic minerals is a possible source of chemical diversity, which is crucial for molecular evolution. Carbon compounds in meteorites are of great scientific interest for a variety of reasons, such as their relevance to the origins of chirality in living organisms. This study presents the characterization of organic and mineral compounds in the Allende meteorite. The structural and physicochemical characterization of the Allende meteorite was accomplished through light microscopy, powder X-ray diffraction with complementary Rietveld refinement, Raman and infrared spectroscopy, mass spectrometry, scanning electron microscopy, and atomic force microscopy using magnetic signal methods to determine the complex structure and the interaction of organic compounds with magnetic Ni-Fe minerals. The presence of Liesegang-like patterns of chondrules in fragments of the Allende structure may also be relevant to understanding how the meteorite was formed. Other observations include the presence of magnetic materials and nanorod-like solids with relatively similar sizes as well as the heterogeneous distribution of carbon in chondrules. Signals observed in the Raman and infrared spectra resemble organic compounds such as carbon nanotubes and peptide-like molecules that have been previously reported in other meteorites, making the Mexican Allende meteorite a feasible sample for the study of the early Earth and exoplanetary bodies.展开更多
Three new carbonaceous chondrites (GRV 020025,021579 and 022459) collected from the Grove Mountains (GRV), Antarctica, have been classified as the CM2, CO3 and CV3 chondrites, respectively. A total of 27 Ca- and Al-ri...Three new carbonaceous chondrites (GRV 020025,021579 and 022459) collected from the Grove Mountains (GRV), Antarctica, have been classified as the CM2, CO3 and CV3 chondrites, respectively. A total of 27 Ca- and Al-rich inclusions have been found in the three meteorites, which are the earliest assemblages formed in the solar nebula. Most of the inclusions are intensively altered, with abundant phyllosilicates in the inclusions from GRV 020025 and FeO enrichment of spinel in those from GRV 022459. Except for one spinel-spherule in each of GRV 020025 and 021579, all the inclusions can be classified as Type A-like or spinel-pyroxene-rich inclusions, and they probably represent the continuum of solar nebular condensation. In addition, most of the inclusions in these meteorites share much similarity in both petrography and mineral chemistry, suggesting a similar origin of Ca-Al-rich inclusions in various chondrites.展开更多
Petrography and mineral chemistry of 24 ordinary chondrites from the Grove Mountains, Antarctica, have been studied in order to identify their chemical-petrographic types. These samples were selected from a total of 4...Petrography and mineral chemistry of 24 ordinary chondrites from the Grove Mountains, Antarctica, have been studied in order to identify their chemical-petrographic types. These samples were selected from a total of 4448 Grove Mountains (GRV) meteorites collected during the 19th Chinese Antarctic Research Expedition so as to make an estimation of the large GRV meteorite collection. The chemical-petrographic types of these meteorites are presented below: 1 H3,2 H4, 4 H5, 2 H6, 1 L4, 7 L5, 5 L6, 1 LL4 and 1 LL6. The new data weaken the previous report that unequilibrated ordinary chondrites are unusually abundant in the Grove Mountains region. However, this work confirms significant differences in distribution patterns of chemical-petrographic types between the Grove Mountains and other regions in Antarctica. Many of these meteorites show significant terrestrial weathering, probably due to a high abundance ratio of meteorites found in moraines to those on blue ice. Nine meteorites experienced severe shock metamorphism, as evidenced by undulose extinction and intense fracturing of silicates and presence of shock-induced melt veins and pockets. These heavily shocked meteorites provided us with natural samples for the study of high-pressure polymorphs of minerals.展开更多
The Ningqiang meteorite is a fall carbonaceous chondrite, containing various Ca-, Al-rich inclusions that usually escaped from secondary events such as high-temperature heating and low- temperature alteration. However...The Ningqiang meteorite is a fall carbonaceous chondrite, containing various Ca-, Al-rich inclusions that usually escaped from secondary events such as high-temperature heating and low- temperature alteration. However, it has not yet been classified into any known chemical group. In order to address this issue, 41 elements of the bulk Ningqiang meteorite were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atom emission spectrometry (ICP-AES) in this study. The Allende (CV3) carbonaceous chondrite and the Jilin (H5) ordinary chondrite were also measured as references, and our analyses are consistent with the previous results. Rare earth and other refractory lithophile elements are depleted in Ningqiang relative to both Allende and mean CK chondrites. In addition, the REE pattern of Ningqiang is nearly flat, while that of Allende shows slight enrichment of LREE relative to HREE. Siderophile elements of Ningqiang are close to those of mean CK chondrites, but lower than those of Allende. Our new analyses indicate that Ningqiang cannot be classified into any known group of carbonaceous chondrites, consistent with previous reports.展开更多
Numerous iron cosmic micro-spherules have been discovered from Mesoproterozoic strata including the Changzhougou Formation (1.8 Ga) and the Dahongyu Formation (1.6 Ga) of the Ming Tombs district, Beijing. There ar...Numerous iron cosmic micro-spherules have been discovered from Mesoproterozoic strata including the Changzhougou Formation (1.8 Ga) and the Dahongyu Formation (1.6 Ga) of the Ming Tombs district, Beijing. There are 1 to 30 grains of cosmic spherules per 2 kg of a sandstone sample taken from the bottom of a coarse sandstone bed of the Changzhougou Formation and 56 grains per 3.69 kg of a rock sample from silicified carbonate rocks of the Dahongyu Formation. The surface textures of cosmic spherules analyzed by means of the secondary electron imagery are identical with those reported from references either domestic or abroad. So far the geo-ages of 1.8 Ga and 1.6 Ga of cosmic spherules from the Changzhougou and Dahongyu formations might be older than those reported in the world. Table 1 gives the electron probe analysis data of cosmic spherules for 30 spherule grains and 44 testing points as follows (%): FeO, 80-95; Cr2O3; 0-9.56; NiO, 0-0.78; CoO, 0-0.46; indicating that the Cr2O3 content is higher and FeO content lower in the Changzhougou Formation than in the Dahongyu Formation. The helium isotopic data of cosmic spherules as well as their host rocks vary greatly between the Changzhougou and the Dahongyu formations as shown in Table 2. The data of cosmic spherules of the Changzhougou Formation vs the Dahongyu Formation are 57.5/1.23 in ^3He/^4He (10^-8); and 55.54/809.60 in ^4He (10^-6cm^3STP/g); those of coarse sandstone of the Changzhougou Formation vs silicified carbonate of the Dahongyu Formation are 3.39/2.59 in ^3He/^4He (10^-8) and 4.56/2.34 in ^3He (10^-6cm^3STP/g). The ratio of analytic data of helium isotopes are different for cosmic spherules and their host rocks; for example, the ^3He/^4He (10^-8) values are 16.96 and 0.48, and the ^4He (10^-6 cm^3STP/g) are 12.18 and 345.98 for the Changzhougou and Dahongyu formations respectively. It was reported that the world's oldest micrometeorites had been found in the Meso-Proterozoic Satakunta Formation, Finland. However, the cosmic spherules from the Meso-Proterozoic Changzhougou and Dahongyu formations are 200 to 400 Ma older than those from the Satakunta Formation. Besides, one carbonaceous chondrite grain was discovered for the first time as the earliest remain formed in the solar nebula from the Dahongyu Formation.展开更多
Stable isotopic data of meteorites are critical for understanding the evolution of terrestrial planets. In this study, we report high-precision vanadium (V) isotopic compositions of 11 unequilibrated and equilibrate...Stable isotopic data of meteorites are critical for understanding the evolution of terrestrial planets. In this study, we report high-precision vanadium (V) isotopic compositions of 11 unequilibrated and equilibrated L chondrites. Our samples show an average δ^51v of -1.25‰ ±0.38‰ (2SD, n = 11), which is ,- 0.5‰ lighter than that of the bulk silicate Earth constrained by mantle peridotites. Isotopic fractionation in type 3 ordinary chondrites vary from - 1.76‰ to - 1.29‰, whereas the δ^51V of equilibrated chondrites vary from - 1.37‰ to -1.08‰. 551V of L chondrites do not correlate with thermal metamorphism, shock stage, or weathering degree. Future studies are required to explore the reason for V isotope variation in the solar system.展开更多
We report the petrology and oxygen isotopic composition,using a Cameca Nano SIMS 50L ion microprobe,of a plagioclase-olivine inclusion,C#1,found in the Ningqiang carbonaceous chondrite.In addition to major phases(plag...We report the petrology and oxygen isotopic composition,using a Cameca Nano SIMS 50L ion microprobe,of a plagioclase-olivine inclusion,C#1,found in the Ningqiang carbonaceous chondrite.In addition to major phases(plagioclase,spinel and olivine),C#1 is also surrounded by a pyroxene rim(64 vol%Ca-rich and 36 vol%Ca-poor pyroxenes).On a three-isotope oxygen diagram,δ^(17)O vs.δ^(18)O,the compositions of individual minerals analyzed in C#1 fall along the carbonaceous chondrite anhydrous mineral line(CCAM),and oxygen isotopic compositions in C#1 show significant variability in δ^(18)O and δ^(17)O.The oxygen isotopic compositions of the pyroxene rim minerals are similar to those of the other host minerals,which suggests that the rim likely formed from the same melting process as the host.The rim is considered to have formed as a result of interaction between an ^(16)O-poor gas and a melt.Some spinel grains are typically ^(16)O-rich and likely of relict origin,which is similar to ^(16)O-rich Ca-,Al-rich inclusions,which are probably a precursor of C#1.The inclusion then likely melted in an ^(16)O-poor region where chondrules form,accompanied by oxygen isotope exchange with an ^(16)O-poor gas.Some anorthite,pyroxene and spinel might have undergone fluid-assisted thermal metamorphism on the Ningqiang chondrite parent body.The oxygen isotope data and evolution of the C#1 plagioclase-olivine inclusion are similar with those of Al-chondrules in chondrites.展开更多
Shock effects of 93 Grove Mountains (GRV) ordinary chondrites were studied in this work, including fracture, various types of extinction, and recrystallization of silicates observed under optical microscopy. Shock-i...Shock effects of 93 Grove Mountains (GRV) ordinary chondrites were studied in this work, including fracture, various types of extinction, and recrystallization of silicates observed under optical microscopy. Shock-induced veins and pockets show various microtextures, decomposition and phase transformation of minerals. The confirmed high-pressure polymorphs of silicates are ringwoodite, majorite, pyroxene glass and maskelynite. Based on the shock effects and assemblages of high-pressure minerals, shock stages of all of 93 GRV ehondrites were classified. In comparison with literature, the Grove Mountains meteorites have a higher fraction (23 out of 93 ) of heavily shocked samples (S4--S5). Most of the heavily shocked meteorites are L group (22 out of 23), except for one H chondrite. The distinct shock metamorphism between H and. L groups may indicate different surface properties of their parent bodies. In addition, there is relationship between petrologic types and shock stages, with most heavily shocked samples observed in equilibrated ordinary chondrites ( especially Type 5 and 6).展开更多
Analysis of the thermal metamorphism of the ordinary chondrites is a key premise for gaining insights into the accretion and heating of rocky bodies in the early solar system.Such an analysis also represents an essent...Analysis of the thermal metamorphism of the ordinary chondrites is a key premise for gaining insights into the accretion and heating of rocky bodies in the early solar system.Such an analysis also represents an essential condition for constraining the early thermal and evolutionary histories of asteroids and terrestrial planets.Classifying ordinary chondrites into petrologic type(type 3–6)is the criterion for studying the thermal metamorphism of their parent bodies.However,the boundary between the unequilibrated(type 3)and equilibrated(type 4–6)chondrites is ambiguous at present,thus,limiting the understanding of their thermal metamorphism.In this study,the petrology,mineralogy and chemical composition of a set of seven ordinary chondrites with different degrees of thermal metamorphism collected from Grove Mountains(Antarctica)have been studied.The results demonstrated that these chondrite samples were L3.7,L3.8,L3.9,L3.9/4,L4,L5 and L6 type meteorites,with optimal correlations of Si,Mg,Fe,Mn and Ca with equilibrium degree of the olivine and low-calcium pyroxene and petrologic type.In this respect,the multi-parameter classification standard PMD(SiO2)-PMD(MgO)-PMD(MnO)-PMD(CaO)based on the percent mean deviation(PMD)of the chemical compositions of the olivine and low-calcium pyroxene was proposed to distinguish between the unequilibrated and equilibrated meteorites.The proposed standard exhibited high“resolution”in terms of classification,thus,also deepening the understanding of the effect of the silicate mineral composition in the thermal metamorphism of chondrites.Highlights The chemical groups and petrologic types of the selected seven Antarctic chondrites were L3.7,L3.8,L3.9,L3.9/4,L4,L5 and L6.A new method for petrologic type classification is proposed to distinguish the unequilibrated and equilibrated chondrites.The above developed multi-parameter system exhibited high“resolution”in terms of classification.展开更多
Petrography and mineral chemistry of four carbonaceous chondrites ( GRV 020017, GRV 020025, GRV 021579, GRV 022459 ) collected from the Grove Mountains ( GRV), Antarctica, were reported here. All four chondrites a...Petrography and mineral chemistry of four carbonaceous chondrites ( GRV 020017, GRV 020025, GRV 021579, GRV 022459 ) collected from the Grove Mountains ( GRV), Antarctica, were reported here. All four chondrites are unequilibrated, as indicated by well shaped chondrules and the chemical variations of olivine and low-Ca pyroxene. The modal abundance ratio of matrix/chondrule are 2 ( GRV 020017), 2. 8 ( GRV 020025 ), l. 2 ( GRV 021579 ), 1 ( GRV 022459 ). GRV 022459 has the largest chondrules (0.6--2.0 ram). A total of 30 Ca-Al-rich inclu- sions were found in the four meteorites. Most inclusions were highly altered, with a- bundant phyllosilicates in the inclusions of GRV 020017 and GRV 020025. On the base of petrography and mineral chemistry, these chondrites are classified as CM2 (GRV 020017 and 020025), CO3 (GRV 021579) and CV3 (GRV 022459).展开更多
Late veneer is an important paradigm in early Earth and planetary studies.It refers to the late addition of extraterrestrial materials to the Earth’s mantle after the core formation,which leads to the overabundances ...Late veneer is an important paradigm in early Earth and planetary studies.It refers to the late addition of extraterrestrial materials to the Earth’s mantle after the core formation,which leads to the overabundances of highly siderophile elements in the primitive upper mantle.In this review,the origin,evolution,and expansion of the late veneer hypothesis are summarized,including some unresolved problems.I hope this review would be helpful for the new entrants to this field.展开更多
Meteorites are the extraterrestrial rocks, which provide insights into the origin and evolution of the solar system. During the past half century, a great number of meteorites has been discovered on the Antarctic Ice ...Meteorites are the extraterrestrial rocks, which provide insights into the origin and evolution of the solar system. During the past half century, a great number of meteorites has been discovered on the Antarctic Ice Sheet, confirming that the Antarctica is the most important meteorite concentration area on the earth. Since the first four Antarctic meteorites were found in Grove Mountains in 1998, a total of 9834 meteorites have been collected by four subsequent expeditions. It opens a new field of meteorite study in China, and also accumulates a great deal of scientific samples for China. Recently, classification of Grove Mountains meteorites has been carried out for 6 years, and made following progresses : ( 1 ) 2433 meteorites, which include many special meteorites, e.g. Martian meteorites, ureilites and carbonaceous chondrites, have been classified. (2) the Antarctic meteorite curation and the sample sharing system are set up preliminarily. (3) the classification procedure, the management of meteorite samples, and the application procedure for the Antarctic meteorites are completed after the systematic classification during these years. (4) young generation researchers on meteorite are trained through the cooperation of many universities and institutes on meteorite classification.展开更多
Petrography and mineral chemistry of ninety-eight ordinary chondrites from Grove Mountains (GRV), Antarctica, were presented and their. Weathering effect, shock metamorphism and type distribution patterns were discu...Petrography and mineral chemistry of ninety-eight ordinary chondrites from Grove Mountains (GRV), Antarctica, were presented and their. Weathering effect, shock metamorphism and type distribution patterns were discussed in this study. Among them, six are unequilibrated ordinary chondrites, including 3 H3 and 3 L3 ; and 92 meteorites are equilibrated ordinary chondrites, including 24 H-group ( 13 H4, 10 H5, 1 H6), 64 L-group (2 L4, 44 L5, 18 L6) and 4 LL-group (3 LL4, 1 LL5). Most GRV ehondrites ( 〉 90% ) displayed minor weathering effect ( W1 and W2). About half of the meteorites experienced severe shock metamorphism. They commonly contain shock-induced melt veins and pockets. These heavily shocked meteorites provide us with natural samples for study of high-pressure polymorphs of minerals. In addition, the Grove Mountains collection seems to have more abundant unequilibrated and L group ordinary ehondrites compared to the US Antarctic meteorite collection which were mainly found along the Transantarctic Mountains.展开更多
基金supported by Science and Technology Planning Project of Guangdong Province,2023B1212060048.
文摘Copper possesses very strong chacophile properties,but under the conditions found in meteorites,its behavior is like that of siderophile elements.The Suizhou meteorite is a highly shocked L6 chondrite.Troilite and taenite are considered the main primary carrier of copper in this meteorite,and the post-shock thermal episode is considered the main reason that elemental Cu migrates from its original host phase and forms metallic grains.The Suizhou meteorite contains a few very thin shock melt veins.The occurrence and behavior of metallic copper in this meteorite were studied by optical microscopic examination,electron microprobe analyses,and high-resolution X-ray elemental intensity mapping.Our results show that metallic copper is abundant in the Suizhou chondritic rock.Metallic copper grains adjacent to small troilite grains inside FeNi metal are the most common occurrence,and those at the FeNi metal–troilite interface are the second most common case.The metallic copper grains occurring at the interface of FeNi metal/troililte and silicate are rather rare.Metallic copper grains are not observed within the Suizhou shock veins,Instead,Cu in elemental form is transferred through shock metamorphism into FeNi metal+troilite intergrowths.Four diff erent occurrence types of Cu in the FeNi metal+troilite intergrowths have been identifi ed:the concentrations of Cu in the FeNi+FeS intergrowths for four occurrence types are rather close,we estimate it might be lower than 1 wt%.
基金financially supported by the Science and Technology Planning Project of Guangdong Province,China, 2020B1212060055。
文摘The Jilin H5 chondrite, the largest known stony meteorite in the world, with its No.1 fragment weighing1770 kg. It contains submillimeter-to centimeter-sized FeNi metal particles/nodules. Our optical microscopic and electron microprobe analyses revealed that the formation of metal nodules in this meteorite is a complex and long-term process, The early stage is the thermal diffusion-caused migration and concentration of dispersed metallic material along fractures to form root-hair shaped metal grains during thermal metamorphism of this meteorite. The later two collision events experienced by this meteorite led to the further migration and aggregation of metallic material into the shock-produced cracks and openings to form largersized metal grains. The shock-produced shear movement and frictional heating occurred in this meteorite greatly enhanced the migration and aggregation of metallic material to form the large-sized nodules. It was revealed that the metal nodule formation process in the Jilin H5 chondrite might perform in the solid or subsolidus state, and neither melting of chondritic metal grains nor shock-induced vaporization of bulk chondrite material are related with this process.
文摘The Suizhou meteorite is a heavily shocked and melted vein-containing L6 chondrite.It contains a minor amount of diopside with a(Ca_(0.419)Mg_(0.466)Fe_(0.088))SiO_(3)composition,and a shock-metamorphosed diopside grain associated with ringwoodite and lingunite was found in a melt vein of this meteorite.Our electron microprobe,transmission electron microscopic and Raman spectroscopic analyses revealed four silicate phases with different compositions and structures inside this shock-metamorphosed diopside grain,termed phase A,B,C and D in this paper.Phase A is identified as orthorhombic(Ca_(0.663)-Mg_(0.314))SiO_(3)-perovskite which is closely associated with phase B,the vitrified(Mg_(0.642)Ca_(0.290)Fe_(0.098))SiO_(3)perovskite.Phase D is assigned to be(Mg_(0.578)Ca_(0.414))SiO_(3)majorite which is associated with phase C,the vetrified Carich Mg-perovskite with a(Mg_(0.853)Ca_(0.167))SiO_(3)composition.Based on high-pressure and high-temperature experiments,the diopside grain in the melt vein of the Suizhou meteorite would have experienced a P–T regime of 20–24GPa and 1800–>2000℃.Such P–T conditions are high enough for the decomposition of the diopside and the formation of four different silicate phases.The orthorhombic(Ca_(0.663)Mg_(0.314))SiO_(3)perovskite found in the Suizhou L6 chondrite might be considered as the third lower-mantle silicate mineral after bridgmanite and davemaoite after the detailed analyses of its crystal structure and physical properties being completed.
文摘The study of the mineral and organic content of the Allende meteorite is important for our understanding of the molecular evolution of the universe as well as the ancient Earth. Previous studies have characterized the magnetic minerals present in ordinary and carbonaceous chondrites, providing information on the evolution of magnetic fields. The interaction of organic compounds with magnetic minerals is a possible source of chemical diversity, which is crucial for molecular evolution. Carbon compounds in meteorites are of great scientific interest for a variety of reasons, such as their relevance to the origins of chirality in living organisms. This study presents the characterization of organic and mineral compounds in the Allende meteorite. The structural and physicochemical characterization of the Allende meteorite was accomplished through light microscopy, powder X-ray diffraction with complementary Rietveld refinement, Raman and infrared spectroscopy, mass spectrometry, scanning electron microscopy, and atomic force microscopy using magnetic signal methods to determine the complex structure and the interaction of organic compounds with magnetic Ni-Fe minerals. The presence of Liesegang-like patterns of chondrules in fragments of the Allende structure may also be relevant to understanding how the meteorite was formed. Other observations include the presence of magnetic materials and nanorod-like solids with relatively similar sizes as well as the heterogeneous distribution of carbon in chondrules. Signals observed in the Raman and infrared spectra resemble organic compounds such as carbon nanotubes and peptide-like molecules that have been previously reported in other meteorites, making the Mexican Allende meteorite a feasible sample for the study of the early Earth and exoplanetary bodies.
基金This work was supported by the pilot project of knowledge-innovation of Chinese Academy of Sciences(Grant No:KZCX3-SW-123)the National Natural Science Foundation of China(Grant No.40025311).
文摘Three new carbonaceous chondrites (GRV 020025,021579 and 022459) collected from the Grove Mountains (GRV), Antarctica, have been classified as the CM2, CO3 and CV3 chondrites, respectively. A total of 27 Ca- and Al-rich inclusions have been found in the three meteorites, which are the earliest assemblages formed in the solar nebula. Most of the inclusions are intensively altered, with abundant phyllosilicates in the inclusions from GRV 020025 and FeO enrichment of spinel in those from GRV 022459. Except for one spinel-spherule in each of GRV 020025 and 021579, all the inclusions can be classified as Type A-like or spinel-pyroxene-rich inclusions, and they probably represent the continuum of solar nebular condensation. In addition, most of the inclusions in these meteorites share much similarity in both petrography and mineral chemistry, suggesting a similar origin of Ca-Al-rich inclusions in various chondrites.
文摘Petrography and mineral chemistry of 24 ordinary chondrites from the Grove Mountains, Antarctica, have been studied in order to identify their chemical-petrographic types. These samples were selected from a total of 4448 Grove Mountains (GRV) meteorites collected during the 19th Chinese Antarctic Research Expedition so as to make an estimation of the large GRV meteorite collection. The chemical-petrographic types of these meteorites are presented below: 1 H3,2 H4, 4 H5, 2 H6, 1 L4, 7 L5, 5 L6, 1 LL4 and 1 LL6. The new data weaken the previous report that unequilibrated ordinary chondrites are unusually abundant in the Grove Mountains region. However, this work confirms significant differences in distribution patterns of chemical-petrographic types between the Grove Mountains and other regions in Antarctica. Many of these meteorites show significant terrestrial weathering, probably due to a high abundance ratio of meteorites found in moraines to those on blue ice. Nine meteorites experienced severe shock metamorphism, as evidenced by undulose extinction and intense fracturing of silicates and presence of shock-induced melt veins and pockets. These heavily shocked meteorites provided us with natural samples for the study of high-pressure polymorphs of minerals.
基金This study was supported by the National Natural Science Foundation (Grant 40473038).
文摘The Ningqiang meteorite is a fall carbonaceous chondrite, containing various Ca-, Al-rich inclusions that usually escaped from secondary events such as high-temperature heating and low- temperature alteration. However, it has not yet been classified into any known chemical group. In order to address this issue, 41 elements of the bulk Ningqiang meteorite were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atom emission spectrometry (ICP-AES) in this study. The Allende (CV3) carbonaceous chondrite and the Jilin (H5) ordinary chondrite were also measured as references, and our analyses are consistent with the previous results. Rare earth and other refractory lithophile elements are depleted in Ningqiang relative to both Allende and mean CK chondrites. In addition, the REE pattern of Ningqiang is nearly flat, while that of Allende shows slight enrichment of LREE relative to HREE. Siderophile elements of Ningqiang are close to those of mean CK chondrites, but lower than those of Allende. Our new analyses indicate that Ningqiang cannot be classified into any known group of carbonaceous chondrites, consistent with previous reports.
基金This work was granted by National Nature Science Foundation of China (Nos. 49772121, 40172044 and 40672082).
文摘Numerous iron cosmic micro-spherules have been discovered from Mesoproterozoic strata including the Changzhougou Formation (1.8 Ga) and the Dahongyu Formation (1.6 Ga) of the Ming Tombs district, Beijing. There are 1 to 30 grains of cosmic spherules per 2 kg of a sandstone sample taken from the bottom of a coarse sandstone bed of the Changzhougou Formation and 56 grains per 3.69 kg of a rock sample from silicified carbonate rocks of the Dahongyu Formation. The surface textures of cosmic spherules analyzed by means of the secondary electron imagery are identical with those reported from references either domestic or abroad. So far the geo-ages of 1.8 Ga and 1.6 Ga of cosmic spherules from the Changzhougou and Dahongyu formations might be older than those reported in the world. Table 1 gives the electron probe analysis data of cosmic spherules for 30 spherule grains and 44 testing points as follows (%): FeO, 80-95; Cr2O3; 0-9.56; NiO, 0-0.78; CoO, 0-0.46; indicating that the Cr2O3 content is higher and FeO content lower in the Changzhougou Formation than in the Dahongyu Formation. The helium isotopic data of cosmic spherules as well as their host rocks vary greatly between the Changzhougou and the Dahongyu formations as shown in Table 2. The data of cosmic spherules of the Changzhougou Formation vs the Dahongyu Formation are 57.5/1.23 in ^3He/^4He (10^-8); and 55.54/809.60 in ^4He (10^-6cm^3STP/g); those of coarse sandstone of the Changzhougou Formation vs silicified carbonate of the Dahongyu Formation are 3.39/2.59 in ^3He/^4He (10^-8) and 4.56/2.34 in ^3He (10^-6cm^3STP/g). The ratio of analytic data of helium isotopes are different for cosmic spherules and their host rocks; for example, the ^3He/^4He (10^-8) values are 16.96 and 0.48, and the ^4He (10^-6 cm^3STP/g) are 12.18 and 345.98 for the Changzhougou and Dahongyu formations respectively. It was reported that the world's oldest micrometeorites had been found in the Meso-Proterozoic Satakunta Formation, Finland. However, the cosmic spherules from the Meso-Proterozoic Changzhougou and Dahongyu formations are 200 to 400 Ma older than those from the Satakunta Formation. Besides, one carbonaceous chondrite grain was discovered for the first time as the earliest remain formed in the solar nebula from the Dahongyu Formation.
基金financially supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB18000000)the National Science Foundation of China (41173077, 41776196, 41630206, and 41325011)+1 种基金the National Science and Technology Foundation Platform Project of Ministry of Science and Technology of China (2005DKA21406)the 111 Project
文摘Stable isotopic data of meteorites are critical for understanding the evolution of terrestrial planets. In this study, we report high-precision vanadium (V) isotopic compositions of 11 unequilibrated and equilibrated L chondrites. Our samples show an average δ^51v of -1.25‰ ±0.38‰ (2SD, n = 11), which is ,- 0.5‰ lighter than that of the bulk silicate Earth constrained by mantle peridotites. Isotopic fractionation in type 3 ordinary chondrites vary from - 1.76‰ to - 1.29‰, whereas the δ^51V of equilibrated chondrites vary from - 1.37‰ to -1.08‰. 551V of L chondrites do not correlate with thermal metamorphism, shock stage, or weathering degree. Future studies are required to explore the reason for V isotope variation in the solar system.
基金supported by the Natural Science Foundation of China(Grant Nos.41673070,41103032,41503062)the Hunan Provincial Natural Science Foundation of China(Grant No.2021JJ30242)the Scientific Research Fund of Hunan Provincial Education Department(Grant No.18A204)。
文摘We report the petrology and oxygen isotopic composition,using a Cameca Nano SIMS 50L ion microprobe,of a plagioclase-olivine inclusion,C#1,found in the Ningqiang carbonaceous chondrite.In addition to major phases(plagioclase,spinel and olivine),C#1 is also surrounded by a pyroxene rim(64 vol%Ca-rich and 36 vol%Ca-poor pyroxenes).On a three-isotope oxygen diagram,δ^(17)O vs.δ^(18)O,the compositions of individual minerals analyzed in C#1 fall along the carbonaceous chondrite anhydrous mineral line(CCAM),and oxygen isotopic compositions in C#1 show significant variability in δ^(18)O and δ^(17)O.The oxygen isotopic compositions of the pyroxene rim minerals are similar to those of the other host minerals,which suggests that the rim likely formed from the same melting process as the host.The rim is considered to have formed as a result of interaction between an ^(16)O-poor gas and a melt.Some spinel grains are typically ^(16)O-rich and likely of relict origin,which is similar to ^(16)O-rich Ca-,Al-rich inclusions,which are probably a precursor of C#1.The inclusion then likely melted in an ^(16)O-poor region where chondrules form,accompanied by oxygen isotope exchange with an ^(16)O-poor gas.Some anorthite,pyroxene and spinel might have undergone fluid-assisted thermal metamorphism on the Ningqiang chondrite parent body.The oxygen isotope data and evolution of the C#1 plagioclase-olivine inclusion are similar with those of Al-chondrules in chondrites.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(kzcx2-yw-110,KZCX2-YW-Q08)
文摘Shock effects of 93 Grove Mountains (GRV) ordinary chondrites were studied in this work, including fracture, various types of extinction, and recrystallization of silicates observed under optical microscopy. Shock-induced veins and pockets show various microtextures, decomposition and phase transformation of minerals. The confirmed high-pressure polymorphs of silicates are ringwoodite, majorite, pyroxene glass and maskelynite. Based on the shock effects and assemblages of high-pressure minerals, shock stages of all of 93 GRV ehondrites were classified. In comparison with literature, the Grove Mountains meteorites have a higher fraction (23 out of 93 ) of heavily shocked samples (S4--S5). Most of the heavily shocked meteorites are L group (22 out of 23), except for one H chondrite. The distinct shock metamorphism between H and. L groups may indicate different surface properties of their parent bodies. In addition, there is relationship between petrologic types and shock stages, with most heavily shocked samples observed in equilibrated ordinary chondrites ( especially Type 5 and 6).
基金funded by Strategic Priority Research Program of Chinese Academy of Sciences(XDB 41000000)Project funded by China Postdoctoral Science Foundation(2020M673557XB)+4 种基金Guangxi Natural Science Foundation under Grant No.2020JJB150056Civil Aerospace Pre Research Project(D020302 and D020206)Guangxi Scientific Base and Talent Special Projects(No.AD1850007)Foundation of Guilin University of Technology(GUTQDJJ2019165)the grant from Key Laboratory of Lunar and Deep Space Exploration,CAS(LDSE201907).
文摘Analysis of the thermal metamorphism of the ordinary chondrites is a key premise for gaining insights into the accretion and heating of rocky bodies in the early solar system.Such an analysis also represents an essential condition for constraining the early thermal and evolutionary histories of asteroids and terrestrial planets.Classifying ordinary chondrites into petrologic type(type 3–6)is the criterion for studying the thermal metamorphism of their parent bodies.However,the boundary between the unequilibrated(type 3)and equilibrated(type 4–6)chondrites is ambiguous at present,thus,limiting the understanding of their thermal metamorphism.In this study,the petrology,mineralogy and chemical composition of a set of seven ordinary chondrites with different degrees of thermal metamorphism collected from Grove Mountains(Antarctica)have been studied.The results demonstrated that these chondrite samples were L3.7,L3.8,L3.9,L3.9/4,L4,L5 and L6 type meteorites,with optimal correlations of Si,Mg,Fe,Mn and Ca with equilibrium degree of the olivine and low-calcium pyroxene and petrologic type.In this respect,the multi-parameter classification standard PMD(SiO2)-PMD(MgO)-PMD(MnO)-PMD(CaO)based on the percent mean deviation(PMD)of the chemical compositions of the olivine and low-calcium pyroxene was proposed to distinguish between the unequilibrated and equilibrated meteorites.The proposed standard exhibited high“resolution”in terms of classification,thus,also deepening the understanding of the effect of the silicate mineral composition in the thermal metamorphism of chondrites.Highlights The chemical groups and petrologic types of the selected seven Antarctic chondrites were L3.7,L3.8,L3.9,L3.9/4,L4,L5 and L6.A new method for petrologic type classification is proposed to distinguish the unequilibrated and equilibrated chondrites.The above developed multi-parameter system exhibited high“resolution”in terms of classification.
基金supported by the Doctor's Foundation of Hunan University of Science and Technology(Grant No.E50806)
文摘Petrography and mineral chemistry of four carbonaceous chondrites ( GRV 020017, GRV 020025, GRV 021579, GRV 022459 ) collected from the Grove Mountains ( GRV), Antarctica, were reported here. All four chondrites are unequilibrated, as indicated by well shaped chondrules and the chemical variations of olivine and low-Ca pyroxene. The modal abundance ratio of matrix/chondrule are 2 ( GRV 020017), 2. 8 ( GRV 020025 ), l. 2 ( GRV 021579 ), 1 ( GRV 022459 ). GRV 022459 has the largest chondrules (0.6--2.0 ram). A total of 30 Ca-Al-rich inclu- sions were found in the four meteorites. Most inclusions were highly altered, with a- bundant phyllosilicates in the inclusions of GRV 020017 and GRV 020025. On the base of petrography and mineral chemistry, these chondrites are classified as CM2 (GRV 020017 and 020025), CO3 (GRV 021579) and CV3 (GRV 022459).
基金supported by NSFC 41703019Strategic Priority ResearchProgram(B)(XDB41000000)CDUT 10912-KYQD2020-08294。
文摘Late veneer is an important paradigm in early Earth and planetary studies.It refers to the late addition of extraterrestrial materials to the Earth’s mantle after the core formation,which leads to the overabundances of highly siderophile elements in the primitive upper mantle.In this review,the origin,evolution,and expansion of the late veneer hypothesis are summarized,including some unresolved problems.I hope this review would be helpful for the new entrants to this field.
基金funded by the National Natural Science Foundation of China(Grant No.40473037 and 40673055)Guangxi College Talents Support Program(RC2007020)
文摘Meteorites are the extraterrestrial rocks, which provide insights into the origin and evolution of the solar system. During the past half century, a great number of meteorites has been discovered on the Antarctic Ice Sheet, confirming that the Antarctica is the most important meteorite concentration area on the earth. Since the first four Antarctic meteorites were found in Grove Mountains in 1998, a total of 9834 meteorites have been collected by four subsequent expeditions. It opens a new field of meteorite study in China, and also accumulates a great deal of scientific samples for China. Recently, classification of Grove Mountains meteorites has been carried out for 6 years, and made following progresses : ( 1 ) 2433 meteorites, which include many special meteorites, e.g. Martian meteorites, ureilites and carbonaceous chondrites, have been classified. (2) the Antarctic meteorite curation and the sample sharing system are set up preliminarily. (3) the classification procedure, the management of meteorite samples, and the application procedure for the Antarctic meteorites are completed after the systematic classification during these years. (4) young generation researchers on meteorite are trained through the cooperation of many universities and institutes on meteorite classification.
基金supported by the Doctor's Foundation of Hunan University of Science and Technology(Grant No.E50806)
文摘Petrography and mineral chemistry of ninety-eight ordinary chondrites from Grove Mountains (GRV), Antarctica, were presented and their. Weathering effect, shock metamorphism and type distribution patterns were discussed in this study. Among them, six are unequilibrated ordinary chondrites, including 3 H3 and 3 L3 ; and 92 meteorites are equilibrated ordinary chondrites, including 24 H-group ( 13 H4, 10 H5, 1 H6), 64 L-group (2 L4, 44 L5, 18 L6) and 4 LL-group (3 LL4, 1 LL5). Most GRV ehondrites ( 〉 90% ) displayed minor weathering effect ( W1 and W2). About half of the meteorites experienced severe shock metamorphism. They commonly contain shock-induced melt veins and pockets. These heavily shocked meteorites provide us with natural samples for study of high-pressure polymorphs of minerals. In addition, the Grove Mountains collection seems to have more abundant unequilibrated and L group ordinary ehondrites compared to the US Antarctic meteorite collection which were mainly found along the Transantarctic Mountains.