A novel current chopping mode was used in a switched reluctance motor drive system to make full use of the characteristics of digital signal processor (DSP) TMS320F240. The necessity of this 180° phase-shift curr...A novel current chopping mode was used in a switched reluctance motor drive system to make full use of the characteristics of digital signal processor (DSP) TMS320F240. The necessity of this 180° phase-shift current control (PSCC) mode is introduced first and then the principle of PSCC covering both hardware requirement and software programming is described in detail. The analysis made indicated that with this mode, the chopping frequency in winding can reach 20 kHz with 10 kHz power switches and the control frequency can reach 40 kHz at the same time. Subsequently, based on the linear and nonlinear mathematical models of the switched reluctance motor (SRM), some simulation work has been done. The simulation results show that when this mode is applied to SRM drive (SRD) system, the current waveform becomes better. So the ripple of the torque is reduced simultaneously and the vibration and acoustic noise are reduced involuntarily. Stationary tests show that the acoustic noise is greatly diminished. Finally, some experiments were made using a 50 kW SRD system for electric vehicle (EV). Experimental results indicate that this mode can be implemented feasibly and it has a good action on the SRD system.展开更多
A onvel current chopping strategy for switched reluc-tance generator(SRG)-a full conducted current chopping(FCCC)scheme is presented,According to characteristics lf phase current wave of SRG generating operation,it ca...A onvel current chopping strategy for switched reluc-tance generator(SRG)-a full conducted current chopping(FCCC)scheme is presented,According to characteristics lf phase current wave of SRG generating operation,it can be generated under sensorless condition without an addi-tional circuit or a position signal algorithm.Simulational results show the feasibility of this scheme.Experimental results of a 6kW6/4configuration SRG show its simplic-ity and high reliability with little decrease in efficiency.Soit will be widely used.展开更多
In view of the large current peak and torque ripple in the actual current chopping control of switched reluctance motor,a segmented PWM duty cycle analysis method of switched reluctance motor based on current chopping...In view of the large current peak and torque ripple in the actual current chopping control of switched reluctance motor,a segmented PWM duty cycle analysis method of switched reluctance motor based on current chopping control is proposed in this paper.The method realizes the control of the winding current by adjusting the average voltage of the two ends of the winding in one cycle through the PWM duty cycle.At the same time,according to the inductance linear model,the conduction phase is divided into a small inductance region and an inductance rising region,and the analytical formulas of PWM duty cycle in the two regions are deduced respectively.Finally,through matlab/simulink simulation and motor platform experiment,the current chopping control is compared with the segmented PWM duty cycle analysis method in this paper.Simulation and experimental results show that the segmented PWM duty cycle analysis method can effectively reduce the current peak and torque ripple,and has high practical application value.展开更多
文摘A novel current chopping mode was used in a switched reluctance motor drive system to make full use of the characteristics of digital signal processor (DSP) TMS320F240. The necessity of this 180° phase-shift current control (PSCC) mode is introduced first and then the principle of PSCC covering both hardware requirement and software programming is described in detail. The analysis made indicated that with this mode, the chopping frequency in winding can reach 20 kHz with 10 kHz power switches and the control frequency can reach 40 kHz at the same time. Subsequently, based on the linear and nonlinear mathematical models of the switched reluctance motor (SRM), some simulation work has been done. The simulation results show that when this mode is applied to SRM drive (SRD) system, the current waveform becomes better. So the ripple of the torque is reduced simultaneously and the vibration and acoustic noise are reduced involuntarily. Stationary tests show that the acoustic noise is greatly diminished. Finally, some experiments were made using a 50 kW SRD system for electric vehicle (EV). Experimental results indicate that this mode can be implemented feasibly and it has a good action on the SRD system.
文摘A onvel current chopping strategy for switched reluc-tance generator(SRG)-a full conducted current chopping(FCCC)scheme is presented,According to characteristics lf phase current wave of SRG generating operation,it can be generated under sensorless condition without an addi-tional circuit or a position signal algorithm.Simulational results show the feasibility of this scheme.Experimental results of a 6kW6/4configuration SRG show its simplic-ity and high reliability with little decrease in efficiency.Soit will be widely used.
基金supported by National Natural Science Foundation of China under Grant 52167005Science and Technology Research Project of Jiangxi Provincial Department of Education under Grant GJJ200826。
文摘In view of the large current peak and torque ripple in the actual current chopping control of switched reluctance motor,a segmented PWM duty cycle analysis method of switched reluctance motor based on current chopping control is proposed in this paper.The method realizes the control of the winding current by adjusting the average voltage of the two ends of the winding in one cycle through the PWM duty cycle.At the same time,according to the inductance linear model,the conduction phase is divided into a small inductance region and an inductance rising region,and the analytical formulas of PWM duty cycle in the two regions are deduced respectively.Finally,through matlab/simulink simulation and motor platform experiment,the current chopping control is compared with the segmented PWM duty cycle analysis method in this paper.Simulation and experimental results show that the segmented PWM duty cycle analysis method can effectively reduce the current peak and torque ripple,and has high practical application value.