As the galvanized steels used for electrical and office appliances has achieved a complete chrome-free production worldwide,surface treatment technologies have entered a new phase of development.Grenter effort will be...As the galvanized steels used for electrical and office appliances has achieved a complete chrome-free production worldwide,surface treatment technologies have entered a new phase of development.Grenter effort will be made in exploring new frontier for future surface treatment technologies.A greater contribution will be made for environmental protection,energy-saving and resource-saving,to prevent globalwarming.展开更多
Based on a novel triazine compound,the properties of tanned leather and commercial feasibility in pilot scale have been investigated.Then this novel approach tanning was compared with conventional chrome tanning:in th...Based on a novel triazine compound,the properties of tanned leather and commercial feasibility in pilot scale have been investigated.Then this novel approach tanning was compared with conventional chrome tanning:in the condition of less-salt pickling and chrome free,the physicochemical properties including thermal stability and mechanical strength were analyzed.Meanwhile,the surface roughness and fiber dispersion were evaluated as well.The results show that the thermal stability and mechanical strength of the triazine compound tanned leather are similar to conventional chrome tanned leather,the fiber bundle is well-dispersed and much evener than that of chrome treating.The optimized tanning approach has obvious reduction in environmental impact and leads an excellent biodegradability of tanning liquor.In industrial application,the cost of materials and water treatment are reduced effectively.The production of chrome free leather can encourage the sustainable development of leather industry and protects ecological environment in some extent.展开更多
The feasibility was investigated to substitute chrome-free passivation treatment of electrodeposited zinc in a titanium bath for chromate passivation treatment. The formation mechanism of the chrome-free passivation f...The feasibility was investigated to substitute chrome-free passivation treatment of electrodeposited zinc in a titanium bath for chromate passivation treatment. The formation mechanism of the chrome-free passivation film was further analyzed. The surface mor- phologies and the elemental compositions of the treated samples with varied immersion times were observed by scanning electron mi- croscopy (SEM) and determined by energy dispersion spectrometry (EDS), respectively. The electrode potential of the sample surface was recorded in the film formation process. The changes of the electrode potential are in accordance with that of SEM and EDS of the sample surface. The results of X-ray photoelectron spectroscopy (XPS) show the chrome-free passivation film composed ofZnO, SiO2, TiO2, Zn4Si207(OH)2, and SrF2. The anode zinc dissolution and the local pH value increase due to the cathode hydrogen ion reduction process result in the formation of the chrome-free passivation film. The macro-images of the chrome-free passivation films formed on electrodeposited zinc show that the color of the film changes from blue to iridescence with the increase of the immersion times.展开更多
The research progress and industrial application of chrome-free refractories for RH degasser were introduced in the paper.It is proved that unburned magnesia-spinel refractories used for RH throat and snorkel in Baost...The research progress and industrial application of chrome-free refractories for RH degasser were introduced in the paper.It is proved that unburned magnesia-spinel refractories used for RH throat and snorkel in Baosteel have longer service life compared with traditional direct bonded fused magnesia-chrome materials.The new developed chrome-free unburned magnesia-spinel composite can fully meet the present demand for RH operation and can be applied extensively for RH processing.At present,instead of chrome-containing materials,chrome-free refractories have been applied widely for RH in Baosteel.Super low carbon MgO-C material with high mechanical properties at mild and high temperatures can be an alternative chrome-free material for RH.展开更多
Chrome oxide free refractories have significant economic benefits for the development of gasification technology.Spinel based and SiC based refractories are corroded by coal slag at 1500℃under reducing atmosphere.Mor...Chrome oxide free refractories have significant economic benefits for the development of gasification technology.Spinel based and SiC based refractories are corroded by coal slag at 1500℃under reducing atmosphere.Moreover,interactions between refractory materials and molten slag are also predicted by thermodynamic calculations under the same conditions.The results indicate that spinel based refractories are corroded by dissolution of molten slag,while SiC based refractories are corroded by oxidation of CO and FeO.Both of the spinel and SiC based refractories show good corrosion resistance against coal slag by the present experimental tests.Finally,preliminary developed spinel-SiC composite materials are prepared and corroded by coal slag as well,the research of which shows great potential to be used in slagging gasifiers.展开更多
The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH(Ruhrstahl-Hereaeus)slags.The composite material exhi...The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH(Ruhrstahl-Hereaeus)slags.The composite material exhibits greater resistance to the RH slags than the traditional MgO-Cr2O3 composite,MgO-ZrO2 composite,and MgO-MgAl2O4-ZrO2 composite.On the basis of the microstructural analysis and mechanisms calculations,the corrosion resistance behavior of the MgO-MgAl2O4-ZrO2 composite is attributable to its highly dispersed structure,which helps protect the high activity of ZrO2.When in contact with the slag,ZrO2 reacts with CaO to form the stable phase CaZrO3,which protects MgAl2O4 against corrosion,thereby enhancing the corrosion resistance of the composite.展开更多
文摘As the galvanized steels used for electrical and office appliances has achieved a complete chrome-free production worldwide,surface treatment technologies have entered a new phase of development.Grenter effort will be made in exploring new frontier for future surface treatment technologies.A greater contribution will be made for environmental protection,energy-saving and resource-saving,to prevent globalwarming.
文摘Based on a novel triazine compound,the properties of tanned leather and commercial feasibility in pilot scale have been investigated.Then this novel approach tanning was compared with conventional chrome tanning:in the condition of less-salt pickling and chrome free,the physicochemical properties including thermal stability and mechanical strength were analyzed.Meanwhile,the surface roughness and fiber dispersion were evaluated as well.The results show that the thermal stability and mechanical strength of the triazine compound tanned leather are similar to conventional chrome tanned leather,the fiber bundle is well-dispersed and much evener than that of chrome treating.The optimized tanning approach has obvious reduction in environmental impact and leads an excellent biodegradability of tanning liquor.In industrial application,the cost of materials and water treatment are reduced effectively.The production of chrome free leather can encourage the sustainable development of leather industry and protects ecological environment in some extent.
文摘The feasibility was investigated to substitute chrome-free passivation treatment of electrodeposited zinc in a titanium bath for chromate passivation treatment. The formation mechanism of the chrome-free passivation film was further analyzed. The surface mor- phologies and the elemental compositions of the treated samples with varied immersion times were observed by scanning electron mi- croscopy (SEM) and determined by energy dispersion spectrometry (EDS), respectively. The electrode potential of the sample surface was recorded in the film formation process. The changes of the electrode potential are in accordance with that of SEM and EDS of the sample surface. The results of X-ray photoelectron spectroscopy (XPS) show the chrome-free passivation film composed ofZnO, SiO2, TiO2, Zn4Si207(OH)2, and SrF2. The anode zinc dissolution and the local pH value increase due to the cathode hydrogen ion reduction process result in the formation of the chrome-free passivation film. The macro-images of the chrome-free passivation films formed on electrodeposited zinc show that the color of the film changes from blue to iridescence with the increase of the immersion times.
文摘The research progress and industrial application of chrome-free refractories for RH degasser were introduced in the paper.It is proved that unburned magnesia-spinel refractories used for RH throat and snorkel in Baosteel have longer service life compared with traditional direct bonded fused magnesia-chrome materials.The new developed chrome-free unburned magnesia-spinel composite can fully meet the present demand for RH operation and can be applied extensively for RH processing.At present,instead of chrome-containing materials,chrome-free refractories have been applied widely for RH in Baosteel.Super low carbon MgO-C material with high mechanical properties at mild and high temperatures can be an alternative chrome-free material for RH.
基金This work was supported by the National Natural Science Foundation of China(U1604252).
文摘Chrome oxide free refractories have significant economic benefits for the development of gasification technology.Spinel based and SiC based refractories are corroded by coal slag at 1500℃under reducing atmosphere.Moreover,interactions between refractory materials and molten slag are also predicted by thermodynamic calculations under the same conditions.The results indicate that spinel based refractories are corroded by dissolution of molten slag,while SiC based refractories are corroded by oxidation of CO and FeO.Both of the spinel and SiC based refractories show good corrosion resistance against coal slag by the present experimental tests.Finally,preliminary developed spinel-SiC composite materials are prepared and corroded by coal slag as well,the research of which shows great potential to be used in slagging gasifiers.
基金financially supported by the National Natural Science Foundation of China (No.51872023)
文摘The corrosion resistance behavior of a highly dispersed MgO-MgAl2O4-ZrO2 composite refractory material is examined by testing with high-basicity and low-basicity RH(Ruhrstahl-Hereaeus)slags.The composite material exhibits greater resistance to the RH slags than the traditional MgO-Cr2O3 composite,MgO-ZrO2 composite,and MgO-MgAl2O4-ZrO2 composite.On the basis of the microstructural analysis and mechanisms calculations,the corrosion resistance behavior of the MgO-MgAl2O4-ZrO2 composite is attributable to its highly dispersed structure,which helps protect the high activity of ZrO2.When in contact with the slag,ZrO2 reacts with CaO to form the stable phase CaZrO3,which protects MgAl2O4 against corrosion,thereby enhancing the corrosion resistance of the composite.