按疾病诊断相关分组(diagnosis related groups,DRG)付费是国际公认较为先进和科学的支付方式之一。实践证明,DRG的引入能够增强医疗服务的可比性,提高医疗服务效率、降低医疗服务成本[1~4]。近年来,国家医保局加快推进医保支付方式改...按疾病诊断相关分组(diagnosis related groups,DRG)付费是国际公认较为先进和科学的支付方式之一。实践证明,DRG的引入能够增强医疗服务的可比性,提高医疗服务效率、降低医疗服务成本[1~4]。近年来,国家医保局加快推进医保支付方式改革。北京市作为国家医疗保障疾病诊断相关分组(China health-care security DRG,CHS-DRG)国家试点城市于2022年3月15日启动66家试点医院的实际付费。展开更多
In tea plants,the abundant flavonoid compounds are responsible for the health benefits for the human body and define the astringent flavor profile.While the downstream mechanisms of flavonoid biosynthesis have been ex...In tea plants,the abundant flavonoid compounds are responsible for the health benefits for the human body and define the astringent flavor profile.While the downstream mechanisms of flavonoid biosynthesis have been extensively studied,the role of chalcone synthase(CHS)in this secondary metabolic process in tea plants remains less clear.In this study,we compared the evolutionary profile of the flavonoid metabolism pathway and discovered that gene duplication of CHS occurred in tea plants.We identified three CsCHS genes,along with a CsCHS-like gene,as potential candidates for further functional investigation.Unlike the CsCHS-like gene,the CsCHS genes effectively restored flavonoid production in Arabidopsis chs-mutants.Additionally,CsCHS transgenic tobacco plants exhibited higher flavonoid compound accumulation compared to their wild-type counterparts.Most notably,our examination of promoter and gene expression levels for the selected CHS genes revealed distinct responses to UV-B stress in tea plants.Our findings suggest that environmental factors such as UV-B exposure could have been the key drivers behind the gene duplication events in CHS.展开更多
基金supported by the National Natural Science Foundation of China(U21A20232,32372756,and 32202551).
文摘In tea plants,the abundant flavonoid compounds are responsible for the health benefits for the human body and define the astringent flavor profile.While the downstream mechanisms of flavonoid biosynthesis have been extensively studied,the role of chalcone synthase(CHS)in this secondary metabolic process in tea plants remains less clear.In this study,we compared the evolutionary profile of the flavonoid metabolism pathway and discovered that gene duplication of CHS occurred in tea plants.We identified three CsCHS genes,along with a CsCHS-like gene,as potential candidates for further functional investigation.Unlike the CsCHS-like gene,the CsCHS genes effectively restored flavonoid production in Arabidopsis chs-mutants.Additionally,CsCHS transgenic tobacco plants exhibited higher flavonoid compound accumulation compared to their wild-type counterparts.Most notably,our examination of promoter and gene expression levels for the selected CHS genes revealed distinct responses to UV-B stress in tea plants.Our findings suggest that environmental factors such as UV-B exposure could have been the key drivers behind the gene duplication events in CHS.