期刊文献+
共找到128,014篇文章
< 1 2 250 >
每页显示 20 50 100
Exploring the mechanisms of calcium carbonate deposition on various substrates with implications for effective anti-scaling material selection
1
作者 Lu Gong Fei-Yi Wu +4 位作者 Ming-Fei Pan Jun Huang Hao Zhang Jing-Li Luo Hong-Bo Zeng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2870-2880,共11页
The unexpected scaling phenomena have resulted in significant damages to the oil and gas industries,leading to issues such as heat exchanger failures and pipeline clogging.It is of practical and fundamental importance... The unexpected scaling phenomena have resulted in significant damages to the oil and gas industries,leading to issues such as heat exchanger failures and pipeline clogging.It is of practical and fundamental importance to understand the scaling mechanisms and develop efficient anti-scaling strategies.However,the underlying surface interaction mechanisms of scalants(e.g.,calcite)with various substrates are still not fully understood.In this work,the colloidal probe atomic force microscopy(AFM)technique has been applied to directly quantify the surface forces between calcite particles and different metallic substrates,including carbon steel(CR1018),low alloy steel(4140),stainless steel(SS304)and tungsten carbide,under different water chemistries(i.e.,salinity and pH).Measured force profiles revealed that the attractive van der Waals(VDW)interaction contributed to the attachment of the calcium carbonate particles on substrate surfaces,while the repulsive electric double layer(EDL)interactions could inhibit the attachment behaviors.High salinity and acidic p H conditions of aqueous solutions could weaken the EDL repulsion and promote the attachment behavior.The adhesion of calcite particles with CR1018 and4140 substrates was much stronger than that with SS304 and tungsten carbide substrates.The bulk scaling tests in aqueous solutions from an industrial oil production process showed that much more severe scaling behaviors of calcite was detected on CR1018 and 4140 than those on SS304 and tungsten carbide,which agreed with surface force measurement results.Besides,high salinity and acidic p H can significantly enhance the scaling phenomena.This work provides fundamental insights into the scaling mechanisms of calcite at the nanoscale with practical implications for the selection of suitable antiscaling materials in petroleum industries. 展开更多
关键词 scaling phenomenon Metallic substrates Surface forces Bulk scaling tests
下载PDF
Complete Universal Scaling in First-Order Phase Transitions
2
作者 Fan Zhong 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第10期8-13,共6页
Phase transitions and critical phenomena are among the most intriguing phenomena in nature and society.They are classified into first-order phase transitions(FOPTs)and continuous ones.While the latter shows marvelous ... Phase transitions and critical phenomena are among the most intriguing phenomena in nature and society.They are classified into first-order phase transitions(FOPTs)and continuous ones.While the latter shows marvelous phenomena of scaling and universality,whether the former behaves similarly is a long-standing controversial issue.Here we definitely demonstrate complete universal scaling in field driven FOPTs for Langevin equations in both zero and two spatial dimensions by rescaling all parameters and subtracting nonuniversal contributions with singular dimensions from an effective temperature and a special field according to an effective theory.This offers a perspective different from the usual nucleation and growth but conforming to continuous phase transitions to study FOPTs. 展开更多
关键词 theory. TRANSITIONS scaling
下载PDF
基于分数阶傅里叶变换和图像加权熵的chirp scaling算法
3
作者 尚敏 徐向辉 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2024年第5期644-653,共10页
针对传统的基于傅里叶变换和匹配滤波实现的chirp scaling(CS)成像算法中多普勒参数随斜距变化以及成像分辨率低的问题,提出利用分数阶傅里叶变换(FRFT)对CS成像算法进行优化。首先建立斜视合成孔径雷达(SAR)回波信号模型,理论推导利用F... 针对传统的基于傅里叶变换和匹配滤波实现的chirp scaling(CS)成像算法中多普勒参数随斜距变化以及成像分辨率低的问题,提出利用分数阶傅里叶变换(FRFT)对CS成像算法进行优化。首先建立斜视合成孔径雷达(SAR)回波信号模型,理论推导利用FRFT代替匹配滤波进行信号压缩。针对方位向最优旋转角的搜索问题,对得到的图像基于加权最小熵建立代价函数,利用动量法的梯度下降优化算法进行迭代计算,最终得到分辨率更高的SAR图像。为验证算法的有效性,分别在点目标仿真数据和实测SAR数据集上进行实验。结果表明,与传统CS成像算法相比,该算法的成像结果成像主瓣宽度更窄、旁瓣更低、成像更加清晰。 展开更多
关键词 分数阶傅里叶变换 chirp scaling成像算法 加权最小熵 斜视SAR 匹配滤波
下载PDF
Scaling Laws Behind Penetrative Turbulence:History and Perspectives
4
作者 Zijing DING Ruiqi HUANG Zhen OUYANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第10期1881-1900,共20页
An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection,which is crucial to many physical processes and has been thought of as a key factor for extreme weather condi... An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection,which is crucial to many physical processes and has been thought of as a key factor for extreme weather conditions.Past theoretical,numerical,and experimental studies on penetrative convection are reviewed,along with field studies providing insights into turbulence modeling.The physical factors that initiate penetrative convection,including internal heat sources,nonlinear constitutive relationships,centrifugal forces and other complicated factors are summarized.Cutting-edge methods for understanding transport mechanisms and statistical properties of penetrative turbulence are also documented,e.g.,the variational approach and quasilinear approach,which derive scaling laws embedded in penetrative turbulence.Exploring these scaling laws in penetrative convection can improve our understanding of large-scale geophysical and astrophysical motions.To better the model of penetrative turbulence towards a practical situation,new directions,e.g.,penetrative convection in spheres,and radiation-forced convection,are proposed. 展开更多
关键词 thermal convection penetrative convection scaling law TURBULENCE
下载PDF
Integer multiple quantum image scaling based on NEQR and bicubic interpolation
5
作者 蔡硕 周日贵 +1 位作者 罗佳 陈思哲 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期259-273,共15页
As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolatio... As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolation,the quantum version of bicubic interpolation has not yet been studied.In this work,we present the first quantum image scaling scheme for bicubic interpolation based on the novel enhanced quantum representation(NEQR).Our scheme can realize synchronous enlargement and reduction of the image with the size of 2^(n)×2^(n) by integral multiple.Firstly,the image is represented by NEQR and the original image coordinates are obtained through multiple CNOT modules.Then,16 neighborhood pixels are obtained by quantum operation circuits,and the corresponding weights of these pixels are calculated by quantum arithmetic modules.Finally,a quantum matrix operation,instead of a classical convolution operation,is used to realize the sum of convolution of these pixels.Through simulation experiments and complexity analysis,we demonstrate that our scheme achieves exponential speedup over the classical bicubic interpolation algorithm,and has better effect than the quantum version of bilinear interpolation. 展开更多
关键词 quantum image processing image scaling bicubic interpolation quantum circuit
下载PDF
Generating highly active oxide-phosphide heterostructure through interfacial engineering to break the energy scaling relation toward urea-assisted natural seawater electrolysis
6
作者 Ngoc Quang Tran Nam Hoang Vu +6 位作者 Jianmin Yu Khanh Vy Pham Nguyen Thuy Tien Nguyen Tran Thuy-Kieu Truong Lishan Peng Thi Anh Le Yoshiyuki Kawazoe 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期687-699,I0014,共14页
Urea-assisted natural seawater electrolysis is an emerging technology that is effective for grid-scale carbon-neutral hydrogen mass production yet challenging.Circumventing scaling relations is an effective strategy t... Urea-assisted natural seawater electrolysis is an emerging technology that is effective for grid-scale carbon-neutral hydrogen mass production yet challenging.Circumventing scaling relations is an effective strategy to break through the bottleneck of natural seawater splitting.Herein,by DFT calculation,we demonstrated that the interface boundaries between Ni_(2)P and MoO_(2) play an essential role in the selfrelaxation of the Ni-O interfacial bond,effectively modulating a coordination number of intermediates to control independently their adsorption-free energy,thus circumventing the adsorption-energy scaling relation.Following this conceptual model,a well-defined 3D F-doped Ni_(2)P-MoO_(2) heterostructure microrod array was rationally designed via an interfacial engineering strategy toward urea-assisted natural seawater electrolysis.As a result,the F-Ni_(2)P-MoO_(2) exhibits eminently active and durable bifunctional catalysts for both HER and OER in acid,alkaline,and alkaline sea water-based electrolytes.By in-situ analysis,we found that a thin amorphous layer of NiOOH,which is evolved from the Ni_(2)P during anodic reaction,is real catalytic active sites for the OER and UOR processes.Remarkable,such electrode-assembled urea-assisted natural seawater electrolyzer requires low voltages of 1.29 and 1.75 V to drive 10 and600 mA cm^(-2)and demonstrates superior durability by operating continuously for 100 h at 100 mA cm^(-2),beyond commercial Pt/C||RuO_(2) and most previous reports. 展开更多
关键词 Interfacial engineering Break scaling relationships Doping Natural seawater splitting Urea electrolysis
下载PDF
Direct scaling of residual displacements for bilinear and pinching oscillators
7
作者 Mohammad Saifullah Vinay K.Gupta 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期129-149,共21页
The estimation of residual displacements in a structure due to an anticipated earthquake event has increasingly become an important component of performance-based earthquake engineering because controlling these displ... The estimation of residual displacements in a structure due to an anticipated earthquake event has increasingly become an important component of performance-based earthquake engineering because controlling these displacements plays an important role in ensuring cost-feasible or cost-effective repairs in a damaged structure after the event.An attempt is made in this study to obtain statistical estimates of constant-ductility residual displacement spectra for bilinear and pinching oscillators with 5%initial damping,directly in terms of easily available seismological,site,and model parameters.None of the available models for the bilinear and pinching oscillators are useful when design spectra for a seismic hazard at a site are not available.The statistical estimates of a residual displacement spectrum are proposed in terms of earthquake magnitude,epicentral distance,site geology parameter,and three model parameters for a given set of ductility demand and a hysteretic energy capacity coefficient in the case of bilinear and pinching models,as well as for a given set of pinching parameters for displacement and strength at the breakpoint in the case of pinching model alone.The proposed scaling model is applicable to horizontal ground motions in the western U.S.for earthquake magnitudes less than 7 or epicentral distances greater than 20 km. 展开更多
关键词 residual displacement spectrum bilinear hysteresis model pinching hysteresis model nonlinear analysis scaling model
下载PDF
The Impact of Model Based Offset Scaling Technique on the Amplitude Variation with Offset Responses from 3D Seismic Data Acquired from the Tano Basin, Offshore Ghana
8
作者 Striggner Bedu-Addo Sylvester Kojo Danuor Aboagye Menyeh 《International Journal of Geosciences》 CAS 2024年第1期40-53,共14页
Amplitudes have been found to be a function of incident angle and offset. Hence data required to test for amplitude variation with angle or offset needs to have its amplitudes for all offsets preserved and not stacked... Amplitudes have been found to be a function of incident angle and offset. Hence data required to test for amplitude variation with angle or offset needs to have its amplitudes for all offsets preserved and not stacked. Amplitude Variation with Offset (AVO)/Amplitude Variation with Angle (AVA) is necessary to account for information in the offset/angle parameter (mode converted S-wave and P-wave velocities). Since amplitudes are a function of the converted S- and P-waves, it is important to investigate the dependence of amplitudes on the elastic (P- and S-waves) parameters from the seismic data. By modelling these effects for different reservoir fluids via fluid substitution, various AVO geobody classes present along the well and in the entire seismic cube can be observed. AVO analysis was performed on one test well (Well_1) and 3D pre-stack angle gathers from the Tano Basin. The analysis involves creating a synthetic model to infer the effect of offset scaling techniques on amplitude responses in the Tano basin as compared to the effect of unscaled seismic data. The spectral balance process was performed to match the amplitude spectra of all angle stacks to that of the mid (26°) stack on the test lines. The process had an effect primarily on the far (34° - 40°) stacks. The frequency content of these stacks slightly increased to match that of the near and mid stacks. In offset scaling process, the root mean square (RMS) amplitude comparison between the synthetic and seismic suggests that the amplitude of the far traces should be reduced relative to the nears by up to 16%. However, the exact scaler values depend on the time window considered. This suggests that the amplitude scaling with offset delivered from seismic processing is only approximately correct and needs to be checked with well synthetics and adjusted accordingly prior to use for AVO studies. The AVO attribute volumes generated were better at resolving anomalies on spectrally balanced and offset scaled data than data delivered from conventional processing. A typical class II AVO anomaly is seen along the test well from the cross-plot analysis and AVO attribute cube which indicates an oil filled reservoir. 展开更多
关键词 Amplitude Variation with Offset (AVO) Model Based Offset scaling Technique Tano Basin
下载PDF
Accelerated Primal-Dual Projection Neurodynamic Approach With Time Scaling for Linear and Set Constrained Convex Optimization Problems
9
作者 You Zhao Xing He +1 位作者 Mingliang Zhou Tingwen Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1485-1498,共14页
The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on... The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on unconstrained smooth con-vex optimization problems.In this paper,on the basis of primal-dual dynamical approach,Nesterov accelerated dynamical approach,projection operator and directional gradient,we present two accelerated primal-dual projection neurodynamic approaches with time scaling to address convex optimization problems with smooth and nonsmooth objective functions subject to linear and set constraints,which consist of a second-order ODE(ordinary differential equation)or differential conclusion system for the primal variables and a first-order ODE for the dual vari-ables.By satisfying specific conditions for time scaling,we demonstrate that the proposed approaches have a faster conver-gence rate.This only requires assuming convexity of the objective function.We validate the effectiveness of our proposed two accel-erated primal-dual projection neurodynamic approaches through numerical experiments. 展开更多
关键词 Accelerated projection neurodynamic approach lin-ear and set constraints projection operators smooth and nonsmooth convex optimization time scaling.
下载PDF
Assessment of Groundwater Stability Using Corrosion and Scaling Tendency Indices on Selected Springs in the Manga Region in Nyamira County, Kenya
10
作者 Calford Odhiambo Otieno Alice Makonjo Wekesa 《Open Journal of Microphysics》 2024年第3期79-88,共10页
We present the result of groundwater stability assessment on three major springs in the Manga region in Nyamira County found in Kenya in 2018. These springs are Kiangoso (SP1), Kerongo (SP2) and Tetema (SP3). The corr... We present the result of groundwater stability assessment on three major springs in the Manga region in Nyamira County found in Kenya in 2018. These springs are Kiangoso (SP1), Kerongo (SP2) and Tetema (SP3). The corrosion and scaling tendency indices were obtained using the Langelier saturation index (LSI), Ryznar stability index (RSI), and Puckorius scaling index (PSI). The LSI values obtained for SP1, SP2, and SP3 are −3.93, −4.71, and −4.17, respectively, while using RSI, the values obtained for SP1, SP2, and SP3 are 14.15, 14.53, and 13.74, respectively. Using PSI, the values of SP1, SP2, and SP3 are 5.58, 5.45, and 5.58, respectively. From the interpretation of the indices, the groundwater from the three springs in the Manga region using LSI and RSI showed intolerable corrosion;hence, it is unlikely to scale as obtained from PSI. 展开更多
关键词 Langelier Saturation Index Ryznar Stability Index Puckorius scaling Index
下载PDF
Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction
11
作者 Sureka Sivavelu Venkatesh Palanisamy 《Computers, Materials & Continua》 SCIE EI 2024年第3期3469-3487,共19页
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w... The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods. 展开更多
关键词 Software defect prediction feature selection nonparametric statistical Torgerson-Gower scaling technique quadratic censored regressive convolution deep neural network softstep activation function nelder-mead method
下载PDF
基于逆chirp scaling的合成孔径雷达卷积欺骗干扰方法
12
作者 纪朋徽 邢世其 +3 位作者 代大海 徐伟 庞礴 冯德军 《电波科学学报》 CSCD 北大核心 2023年第6期1029-1039,共11页
针对现有合成孔径雷达(synthetic aperture radar,SAR)欺骗干扰方法生成虚假场景时难以兼顾逼真度和低计算量的问题,提出了一种基于逆chirp scaling(CS)成像方法的SAR卷积欺骗干扰方法.该方法利用相位相乘补偿虚假场景内各虚假点的距离... 针对现有合成孔径雷达(synthetic aperture radar,SAR)欺骗干扰方法生成虚假场景时难以兼顾逼真度和低计算量的问题,提出了一种基于逆chirp scaling(CS)成像方法的SAR卷积欺骗干扰方法.该方法利用相位相乘补偿虚假场景内各虚假点的距离徙动,避免了插值运算,在降低求解干扰机频率响应函数计算量的同时,提高了虚假场景的生成精度.并且通过对欺骗模板进行线性调频Z变换(chirp-Z transform,CZT),直接从模板图像变换到实际SAR信号对应的空间频域,再次避免了插值运算,进一步降低了求解干扰机频率响应函数的计算量,提高了干扰机实时性.理论分析和仿真实验验证了相比逆omega-K(ωk)近似方法和经典的两步生成方法,本文方法能够兼顾虚假场景的生成精度和计算效率. 展开更多
关键词 合成孔径雷达(SAR) 虚假场景 chirp scaling(CS)成像 线性调频Z变换(CZT) 干扰机
下载PDF
Quantum color image scaling based on bilinear interpolation 被引量:2
13
作者 高超 周日贵 李鑫 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期235-244,共10页
As a part of quantum image processing, quantum image scaling is a significant technology for the development of quantum computation. At present, most of the quantum image scaling schemes are based on grayscale images,... As a part of quantum image processing, quantum image scaling is a significant technology for the development of quantum computation. At present, most of the quantum image scaling schemes are based on grayscale images, with relatively little processing for color images. This paper proposes a quantum color image scaling scheme based on bilinear interpolation, which realizes the 2^(n_(1)) × 2^(n_(2)) quantum color image scaling. Firstly, the improved novel quantum representation of color digital images(INCQI) is employed to represent a 2^(n_(1)) × 2^(n_(2)) quantum color image, and the bilinear interpolation method for calculating pixel values of the interpolated image is presented. Then the quantum color image scaling-up and scaling-down circuits are designed by utilizing a series of quantum modules, and the complexity of the circuits is analyzed.Finally, the experimental simulation results of MATLAB based on the classical computer are given. The ultimate results demonstrate that the complexities of the scaling-up and scaling-down schemes are quadratic and linear, respectively, which are much lower than the cubic function and exponential function of other bilinear interpolation schemes. 展开更多
关键词 quantum image processing image scaling quantum image representation bilinear interpolation
下载PDF
Scalings for the Alfvén-cyclotron instability in a bi-kappa plasma 被引量:2
14
作者 YueQun Lou Xing Cao +2 位作者 MingYu Wu BinBin Ni TieLong Zhang 《Earth and Planetary Physics》 CAS CSCD 2023年第6期631-639,共9页
The particle velocity distribution in space plasma usually exhibits a non-Maxwellian high-energy tail that can be well modeled by kappa distributions.In this study,we focus on the growth rates of the Alfvén-cyclo... The particle velocity distribution in space plasma usually exhibits a non-Maxwellian high-energy tail that can be well modeled by kappa distributions.In this study,we focus on the growth rates of the Alfvén-cyclotron instability driven by ion temperature anisotropy in a kappa plasma.By solving the kinetic linear dispersion equation,we explore the sensitivity of growth rates to the spectral indexκof a bi-kappa distribution under different plasma conditions,including a variety of plasma beta β_(hp) and temperature anisotropy A_(hp) values of hot protons.Furthermore,a concise,analytic scaling formula is derived that relates the dimensionless maximum growth rate to three independent variables:the spectral index and the plasma beta and temperature anisotropy of hot protons.Our results show that as theκ-value increases,the instability bandwidth narrows and the maximum growth rate increases significantly.For higherβ_(hp)and A_(hp)′the maximum instability undergoes a sharp increase as well.When our fits of dimensionless maximum growth rates are compared with solutions to kinetic linear dispersion theory,the results generally exhibit good agreement between them.Especially under the circumstances of largeκ-values and highβ_(hp)and A_(hp)′the scalings of maximum growth rates primarily accurately model the numerical solutions.Our analytic expressions can readily be used in large-scale models of the Earth’s magnetosphere to understand wave generation due to the Alfvén-cyclotron instability. 展开更多
关键词 Alfvén-cyclotron instability kappa distribution kinetic linear dispersion theory scaling formula
下载PDF
Prediction of the viscosity of natural gas at high temperature and high pressure using free-volume theory and entropy scaling 被引量:1
15
作者 Wei Xiong Lie-Hui Zhang +5 位作者 Yu-Long Zhao Qiu-Yun Hu Ye Tian Xiao He Rui-Han Zhang Tao Zhang 《Petroleum Science》 SCIE EI CSCD 2023年第5期3210-3222,共13页
Eighteen models based on two equations of state(EoS),three viscosity models,and four mixing rules were constructed to predict the viscosities of natural gases at high temperature and high pressure(HTHP)conditions.For ... Eighteen models based on two equations of state(EoS),three viscosity models,and four mixing rules were constructed to predict the viscosities of natural gases at high temperature and high pressure(HTHP)conditions.For pure substances,the parameters of free volume(FV)and entropy scaling(ES)models were found to scale with molecular weight,which indicates that the ordered behavior of parameters of Peng-Robinson(PR)and Perturbed-Chain Statistical Associating Fluid Theory(PC-SAFT)propagates to the behavior of parameters of viscosity model.Predicting the viscosities of natural gases showed that the FV and ES models respectively combined with MIX4 and MIX2 mixing rules produced the best accuracy.Moreover,the FV models were more accurate for predicting the viscosities of natural gases than ES models at HTHP conditions,while the ES models were superior to PRFT models.The average absolute relative deviations of the best accurate three models,i.e.,PC-SAFT-FV-MIX4,tPR-FVMIX4,and PC-SAFT-ES-MIX2,were 5.66%,6.27%,and 6.50%,respectively,which was available for industrial production.Compared with the existing industrial models(corresponding states theory and LBC),the proposed three models were more accurate for modeling the viscosity of natural gas,including gas condensate. 展开更多
关键词 VISCOSITY Friction theory Free volume theory Entropy scaling PC-SAFT Equation of state
下载PDF
Scaling and clogging treatment of aging tunnel drainage pipes in karst areas using eco-friendly acid agent 被引量:1
16
作者 Zhipeng Xu Xuemei Wang +2 位作者 Chunfang Zhang Dejian Zeng Changwu Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期896-910,共15页
In karst areas,the drainage pipes of aging tunnels are prone to be clogged by precipitated carbonates,resulting in lining cracking and tunnel leaking.As a result,not only the driving safety will be deteriorated,but al... In karst areas,the drainage pipes of aging tunnels are prone to be clogged by precipitated carbonates,resulting in lining cracking and tunnel leaking.As a result,not only the driving safety will be deteriorated,but also the water pressure on the lining might also be elevated significantly.For the structural stability and service lifespan of old tunnels,it is of great importance to remove these precipitated carbonates in time.Traditional treatment methods are often destructive to some extent or not efficient enough.This study aims to experimentally develop an eco-friendly acid-based chemical cleaning method to remove carbonate precipitations efficiently.The proposed chemical cleaning agent is an aqueous solution with strong acidity,consisting of sulfamic acid,water,and additives.The factors affecting the cleaning efficiency include the acid solubility,temperature and flow rate of the cleaning agent,as well as additives.Elevating the solution temperature to 50C or a flow rate of no less than 0.2 m/s can improve cleaning efficiency.Although the salt effect cannot work,1 wt%of polymaleic acid as a surfactant could further promote the cleaning rate.The cleaning efficiency will increase with the flow rate in a power function.The relatively low flow rate that improves the cleaning rate considerably can avoid highpressure-induced mechanical damage to tunnel drainpipes.The waste could be easily treated to acceptable levels using commercial sewage treatment products and can also be recycled in agriculture.With the chemical cleaning,the water pressure at the arch springing of the lining will reduce with the increased radius of transverse drainpipes in a power function.The proposed acid-based cleaning method,which is highly efficient,non-or low-destructive to aging tunnels,sufficiently safe for humans,and friendly enough to the environment,will offer a promising alternative to remove the precipitated carbonates in tunnel drainpipes efficiently. 展开更多
关键词 CLOGGING scaling Carbonate precipitation Acid treatment Water pressure on the lining Aging tunnel KARST
下载PDF
New empirical scaling equations for oil recovery by free fall gravity drainage in naturally fractured reservoirs 被引量:1
17
作者 Marzieh Alipour Mohammad Madani 《Energy Geoscience》 2023年第3期233-251,共19页
Gas-oil gravity drainage is a recognized major contributor to production in fractured reservoirs. While various empirical and analytical methods have been proposed to model this process, many of them contain assumptio... Gas-oil gravity drainage is a recognized major contributor to production in fractured reservoirs. While various empirical and analytical methods have been proposed to model this process, many of them contain assumptions that are questionable or require parameters that are not accessible at the field level. The aim of this work is to provide new, easy-to-use scaling equations for estimating the recoverable oil through gravity drainage in naturally fractured reservoirs, considering the effects of resistance capillary pressure. To accomplish this, data from four oilfields undergoing gravity drainage, including rock properties (eight sets), block height (three sets), and fluid properties (four sets), were used to generate a wide range of recovery curves using a single porosity numerical simulation model. Aronofsky's and Lambert's functions were then utilized to match the generated recovery curves. Statistical analysis revealed that the Aronofsky's function is more accurate in replicating the recovery patterns, while the Lambert's function tends to overestimate the early-time oil recovery and underestimate the oil recovery at a later stage in the majority of cases. A sensitivity analysis was subsequently performed, revealing that parameters such as absolute permeability, viscosity of oil, height of block, gas and oil density, characteristics of relative permeability and capillary pressure curves and interfacial tension (IFT) influence the amount of time taken to achieve the final recovery. Of these parameters, absolute permeability has the most significant effect on the amount of time needed to attain the final recovery, while the effect of difference between oil and gas densities is the lowest. Consequently, two different expressions were developed using nonlinear multiple regression analysis of simulated gravity drainage data which can be combined with the Aronofsky model to substitute the rate convergence constant. The new scaling equations include the effects of capillary pressure and other relevant factors in gravity drainage simulations. Both forms show satisfactory accuracy, as evidenced by the statistical parameters obtained (R2 = 0.99 and MSE = 0.0019 for both established correlations). The new correlations were verified using a wide range of oilfield data and are expected to provide a better understanding of the recovery process in naturally fractured reservoirs. 展开更多
关键词 scaling:Gravity drainage:Oil Tecovery Reservoir simnulation Fractu ired reservoir
下载PDF
Call for papers: Special Issue on “Novel technologies for sustainable monitoring of polar environment upscaling from in situ observations to aerial and space-borne remote sensing”
18
《Advances in Polar Science》 CSCD 2023年第4期368-368,共1页
Polar regions have received increasing scientific research attentions,in great part,due to its dramatic changes of temperature in recent decades.Satellite remote sensing data provides consistent,regional and large sca... Polar regions have received increasing scientific research attentions,in great part,due to its dramatic changes of temperature in recent decades.Satellite remote sensing data provides consistent,regional and large scales patterns of polar oceans and sea ice that are essential for polar climate modelling and operational service.One the other hand,acquiring in situ observations data is hampered by harsh environmental conditions.These ground truths are critical for remote sensing algorithms and numerical models’validation,and therefore,play important roles to improve the quality of polar weather and climate forecast and enhance better understanding of advances in polar science. 展开更多
关键词 WEATHER POLAR scaling
下载PDF
Aerodynamic shape and drag scaling law of a flexible fibre in a flowing medium
19
作者 Bo-Hua Sun Xiao-Lin Guo 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第3期159-163,共5页
The study of a flexible body immersed in a flowing medium is one of the best way to find its aerodynamic shape.This Letter revisited the problem that was first studied by Alben et al.(Nature 420,479–481,2002).To dete... The study of a flexible body immersed in a flowing medium is one of the best way to find its aerodynamic shape.This Letter revisited the problem that was first studied by Alben et al.(Nature 420,479–481,2002).To determine the aerodynamic shape of the fibre,a simpler approach is proposed.A universal drag scaling law is obtained and the universality of the Alben-Shelley-Zhang scaling law is confirmed by using dimensional analysis.A complete Maple code is provided for finding aerodynamic shape of the fibre in the flowing medium. 展开更多
关键词 Flexible fibre Flow medium Aerodynamic shape Drag scaling law
下载PDF
A modified generalized scaling law for the similitude of dynamic strain in centrifuge modeling
20
作者 Ma Qiang Ling Daosheng +2 位作者 Meng Di Kyohei Ueda Zhou Yanguo 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期589-600,共12页
Soil strain is the key parameter to control the elasto-plastic deformation and even the failure processes.To overcome the defect that the strain of the model soil is always smaller than that of the prototype in Iai′s... Soil strain is the key parameter to control the elasto-plastic deformation and even the failure processes.To overcome the defect that the strain of the model soil is always smaller than that of the prototype in Iai′s generalized scaling law(GSL),a modified scaling law was proposed based on Iai′s GSL to secure the same dynamic shear strain between the centrifuge model and the prototype by modulating the amplitude and frequency of the input motion at the base.A suite of dynamic centrifuge model tests of dry sand level ground was conducted with the same overall scaling factor(λ=200)under different centrifugal accelerations by using the technique of“modeling of models”to validate the modified GSL.The test results show that the modified GSL could achieve the same dynamic strain in model as that of the prototype,leading to better modeling for geotechnical problems where dynamic strain dominates the response or failure of soils.Finally,the applicability of the proposed scaling law and possible constraints on geometry scaling due to the capability limits of existing centrifuge shaking tables are discussed. 展开更多
关键词 deep deposit seismic response generalized scaling law centrifuge model test
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部