Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Ba...Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Backpropagation Neural Network(BPNN)is proposed to improve the operational safety of LVCB.Taking the 1.5kV/4000A/75kA LVCB as an example.According to the current operating characteristics of the energy storage motor,fault characteristics are extracted based on Empirical Wavelet Transform(EWT).Traditional BPNN has problems such as difficulty adjusting network weights and thresholds,being sensitive to initial weights,and quickly falling into local optimal solutions.The Sparrow Search Algorithm(SSA)with self-adjusting weight factors combined with bidirectional mutations is added to optimize the selection of BPNN hyperparameters.The results show that the ISSA-BPNN can accurately and quickly distinguish six conditions of motor voltage reduction:motor voltage increase,motor voltage decrease,energy storage spring stuck,transmission gear stuck,regular state and energy storage spring not locked.It is suitable for fault diagnosis and detection of the energy storage part of LVCB.展开更多
High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faul...High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faults.This study proposes a component separation method to detect multiple mechanical faults in circuit breakers that can achieve online real-time monitoring.First,a model and strategy are presented for obtaining mechanical voiceprint signals from circuit breakers.Subsequently,the component separation method was used to decompose the voiceprint signals of multiple faults into individual component signals.Based on this,the recognition of the features of a single-fault voiceprint signal can be achieved.Finally,multiple faults in high-voltage circuit breakers were identified through an experimental simulation and verification of the circuit breaker voiceprint signals collected from the substation site.The research results indicate that the proposed method exhibits excellent performance for multiple mechanical faults,such as spring structures and loose internal components of circuit breakers.In addition,it provides a reference method for the real-time online monitoring of high-voltage circuit breakers.展开更多
This study investigates the breakdown voltage characteristics in sulfur hexafluoride(SF6)circuit breakers,employing a novel approach that integrates both experimental investigations and finite element simulations.Util...This study investigates the breakdown voltage characteristics in sulfur hexafluoride(SF6)circuit breakers,employing a novel approach that integrates both experimental investigations and finite element simulations.Utilizing a sphere-sphere electrode configuration,we meticulously measured the relationship between breakdown voltage and electrode gap distances ranging from 1 cm to 4.5 cm.Subsequent simulations,conducted using COMSOL Multiphysics,mirrored the experimental setup to validate the model’s accuracy through a comparison of the breakdown voltage-electrode gap distance curves.The simulation results not only aligned closely with the experimental data but also allowed the extraction of detailed electric field strength,electric potential contours,and electric current flow curves at the breakdown voltage for gap distances extending from 1 to 4.5 cm.Extending the analysis,the study explored the electric field and potential distribution at a constant voltage of 72.5 kV for gap distances between 1 to 10 cm,identifying the maximum electric field strength.A comprehensive comparison of five different electrode configurations(sphere-sphere,sphere-rod,sphere-plane,rod-plane,rod-rod)at 72.5 kV and a gap distance of 1.84 cm underscored the significant influence of electrode geometry on the breakdown process.Moreover,the research contrasts the breakdown voltage in SF6 with that in air,emphasizing SF6’s superior insulating properties.This investigation not only elucidates the intricate dynamics of electrical breakdown in SF6 circuit breakers but also contributes valuable insights into the optimal electrode configurations and the potential for alternative insulating gases,steering future advancements in high-voltage circuit breaker technology.展开更多
This paper outlines the significance of enhancing the instantaneous protection reliability of low voltage circuit breakers and describes their main failure modes. The instantaneous failure mechanism of low voltage cir...This paper outlines the significance of enhancing the instantaneous protection reliability of low voltage circuit breakers and describes their main failure modes. The instantaneous failure mechanism of low voltage circuit breakers was analyzed so that measures to improve instantaneous protection reliability can be determined. Furthermore, the theory of the instantaneous characteristics calibration device for low voltage circuit breakers and the method of eliminating the non-periodic component of test current are given in detail. Finally, the test results are presented.展开更多
Nozzle wall ablation caused by high temperature electric arcs is studied in the context of high voltage SF6 circuit breakers. The simplified ablation model used in litterature has been updated to take into account the...Nozzle wall ablation caused by high temperature electric arcs is studied in the context of high voltage SF6 circuit breakers. The simplified ablation model used in litterature has been updated to take into account the unsteady state of ablation. Ablation rate and velocity are now calculated by a kinetic model using two layers of transition, between the bulk plasma and the ablating wall. The first layer (Knudsen layer), right by the wall, is a kinetic layer of a few mean-free path of thickness. The second layer is collision dominated and makes the transition between the kinetic layer and the plasma bulk. With this new coupled algorithm, it is now possible to calculate the temperature distribution inside the wall, as well as more accurate ablation rates.展开更多
In order to get an insight into residual plasma radial motion during the post-arc stage,a twodimensional(2D)cylindrical particle-in-cell(PIC)model is developed.Firstly,influences of a virtual boundary condition on the...In order to get an insight into residual plasma radial motion during the post-arc stage,a twodimensional(2D)cylindrical particle-in-cell(PIC)model is developed.Firstly,influences of a virtual boundary condition on the residual plasma motion are studied.For purpose of validating this 2D cylindrical particle-in-cell model,a comparison between one-dimensional particle-in-cell model is also presented in this paper.Then a study about the influences of the rising rate of transient recovery voltage on the residual plasma radial motion is presented on the basis of the 2D PIC model.展开更多
In October 1996, The Dhaka Stock Exchange (DSE) adopted trading halts for individual stocks, collectively known as "circuit breakers", to reduce the stock market volatility. This paper reviews the existing circuit...In October 1996, The Dhaka Stock Exchange (DSE) adopted trading halts for individual stocks, collectively known as "circuit breakers", to reduce the stock market volatility. This paper reviews the existing circuit breakers literature and developed five hypothesis--"Magnet Effect", "Cool off-Heating (C-H) Effect", "Information Hypothesis", "Volatility Spillover Hypothesis" and "Trading Interferences Hypothesis"--which could be tested empirically not only in the Dhaka Stock Exchange but any stock exchanges around the world. This paper also suggests most appropriate econometric models for empirical testing. GARCH for inter day data and Event Study methodology for intra day data. Moreover, to test the robustness non-parametric tests need to use along with parametric one. Considering the stock market bubbles in 1996, it has been found that it was optimal for the regulators to adopt this trading halt, but not for the market. It failed to protect the market. However, this might be the consequences of misconceptions about the purpose and effectiveness of circuit breakers. Despite many arguments contrary to this mechanism and absence of any conclusive empirical evidence for a fragile stock exchange like DSE, it may be useful sometimes to replace the "invisible hand of the marketplace" with the "visible hand of the market regulators".展开更多
The DRM (dynamic contact resistance measurement) in high voltage circuit breakers is a manner of evaluating the internal ageing condition of the chamber. DRM is similar to static contact resistance measurement testi...The DRM (dynamic contact resistance measurement) in high voltage circuit breakers is a manner of evaluating the internal ageing condition of the chamber. DRM is similar to static contact resistance measurement testing, but instead of measuring a single value when the breaker contacts are closed (static value), the ohmic resistance is measured at various contact positions, from the beginning of the contact opening until a complete separation of the contacts. The relationship between the contact resistances of the new circuit breaker and the ageing circuit breaker in operation provides subsidy for the evaluation of both the main and arcing contact conditions. This research aims to analyze the correlation between the various levels of degradation of the contacts and the configuration of the DRM curve. This work considers curve samples from new acceleration tests. breaker chamber contacts and different levels of degradation by展开更多
To promote the accuracy and application of arcing time measurement for SF_6 circuit breaker in substation,five measurement methods are investigated by two cases experimentally. First,the test results of the five metho...To promote the accuracy and application of arcing time measurement for SF_6 circuit breaker in substation,five measurement methods are investigated by two cases experimentally. First,the test results of the five methods for a circuit breaker in different stages of wear and a circuit breaker with a component failure were presented. Then,the time error is analyzed by simulation.Finally,the advantage and disadvantage of these methods are discussed.展开更多
The article describes design peculiarities of the novel compact vacuum circuit breaker with rated voltage 40.5 kV. The design incorporates several novel technical solutions: polycarbonate support insulation, mono-sta...The article describes design peculiarities of the novel compact vacuum circuit breaker with rated voltage 40.5 kV. The design incorporates several novel technical solutions: polycarbonate support insulation, mono-stable magnetic actuator, labyrinth pulling insulator, core-type flexible contact and new compact vacuum interrupter (VI). Phases are encapsulated into silicone rubber providing required creepage distance and excellent tracking resistance. These novelties along with extensive modeling of the mechanical and electrical fields followed by design optimization resulted in weight reduction of more than 50% compared with alternatives available in the market. And this is in spite of built in sensors measuring: phase currents, zero-sequence current, phase voltages.展开更多
A numerical simulation model for 252 kV puffer circuit breaker is constructed, by using a proven commercial computational fluid dynamics (CFD) package, PHOENICS. The model takes into account the moving parts in the ...A numerical simulation model for 252 kV puffer circuit breaker is constructed, by using a proven commercial computational fluid dynamics (CFD) package, PHOENICS. The model takes into account the moving parts in the circuit breaker, turbulence enhanced momentum and energy transport, radiation transport. The arcing process in a SF6 puffer circuit breaker with two hollow contacts is simulated under different conditions, and the simulation results are verified with experimental results. Through simulation, the pressure, temperature and velocity in the arc quenching chamber can be obtained. The simulation model is also capable of predicting the influence of design parameters variations on breaker performance, and can thus help to reduce the number of short-circuit tests during the design stage.展开更多
When interrupting short circuit fault by 40.5-kV vacuum circuit breakers, it is significant to eliminate multiple restrike phenomena, which occur frequently and result in high overvoltage and even interruption failure...When interrupting short circuit fault by 40.5-kV vacuum circuit breakers, it is significant to eliminate multiple restrike phenomena, which occur frequently and result in high overvoltage and even interruption failure. A synthetic circuit that can supply a DC recovery voltage after current zero was used to study multiple restrike phenomena in switching. Some key factors including breaking current, clearance between open contacts, electrode structure and contact material, which may affect restrike characteristics, were studied. Under various clearances, the statistical probability of restrike was obtained. As a result, the best scope of clearance between open contacts was found. The performance of CuCr50/50 and CuCr75/25 material were compared. Two kinds of electrode structures, namely 1/2 coil structure and cup-shaped axial magnetic structure, were tested. After a high-current interruption, conditioning effoct was realized and the probability of restrike decreased.展开更多
This paper analyzed the reliability and put forward the reliability index of overload protection for moulded case circuit breaker. The success rate was adopted as its reliability index of overload protection. Based on...This paper analyzed the reliability and put forward the reliability index of overload protection for moulded case circuit breaker. The success rate was adopted as its reliability index of overload protection. Based on the reliability index and the reli- ability level, the reliability examination plan was analyzed and a test device for the overload protection of moulded case cir- cuit-breaker was developed. In the reliability test of overload protection, two power sources were used, which reduced the time of conversion and regulation between two different test currents in the overload protection test, which made the characteristic test more accurate. The test device was designed on the base of a Windows system, which made its operation simple and friendly.展开更多
High voltage DC grids are developing in more terminals and with larger transmission capacity,thus the re-quirements for DC circuit breakers(DCCB)will continue to rise.Conventional methods only use the faulty line DCCB...High voltage DC grids are developing in more terminals and with larger transmission capacity,thus the re-quirements for DC circuit breakers(DCCB)will continue to rise.Conventional methods only use the faulty line DCCB to withstand the fault stress,and therefore this paper presents a coordination method of multiple DCCBs to protect the system.As many adjacent DCCBs are tripped to interrupt the fault current,the fault energy is shared,and the requirement for the faulty line DCCB is reduced.Moreover,the adjacent DCCBs are actively controlled to help system recovery.The primary protection,backup protection,and reclosing logic of multiple DCCBs are studied.Simulations confirm that the proposed control reduces the energy dissipation requirement of faulty line DCCB by approximately 30%-42%,the required current rating for IGBTs is reduced,and the system recovery time is also reduced by 20-40 ms.展开更多
High voltage direct current(HVDC)systems are efficient solutions for the integration of large-scale renewable energy sources with the main power grids.The rapid development of the HVDC grid has resulted in a growing i...High voltage direct current(HVDC)systems are efficient solutions for the integration of large-scale renewable energy sources with the main power grids.The rapid development of the HVDC grid has resulted in a growing interest in DC circuit breakers(DCCBs).A fast and reliable circuit breaker is a necessary requirement in the development of large scale HVDC grids.This paper provides a comprehensive review and survey of the HVDC CBs and discusses potential research directions.Operational principles and the main features of various DCCBs are described and their merits and shortcomings are also highlighted.展开更多
High voltage circuit breakers are the most important protection and control apparatus in power system. As a core part of circuit breakers, the operating mechanisms have a trend to be hydraulic-style in high voltage po...High voltage circuit breakers are the most important protection and control apparatus in power system. As a core part of circuit breakers, the operating mechanisms have a trend to be hydraulic-style in high voltage power grid. Compared with other hydranlic systems, the hydraulic operating mechanisms have the characteristics of high hydraulic pressure, high speed, high power and long-term waiting etc., and it is because of the characteristics that the hydraulic operating mechanisms become dif- ficult to be developed and have been arousing significant study interest from more and more researchers as well as their promising applications. Therefore, it is significant to summarize the hydraulic operating mechanisms on their development, characteristics, and key technologies etc. In this review, the evolution process and recent studies of hydraulic operating mechanisms at home and abroad are viewed. The review then focuses on the characteristics and key technologies of hydraulic operating mechanisms, especially on time and velocity characteristics, high-speed cylinder cushioning, fast response and great flow rate control valve, temperature compensation, system monitoring and fault diagnosis, intelligent operation, energy storage module, etc. In the end, the future trends of this field are presented.展开更多
This paper proposes a DC fault protection strategy for large multi-terminal HVDC(MTDC)network where MMC based DC-DC converter is configured at strategic locations to allow the large MTDC network to be operated interco...This paper proposes a DC fault protection strategy for large multi-terminal HVDC(MTDC)network where MMC based DC-DC converter is configured at strategic locations to allow the large MTDC network to be operated interconnected but partitioned into islanded DC network zones following faults.Each DC network zone is protected using either AC circuit breakers coordinated with DC switches or slow mechanical type DC circuit breakers to minimize the capital cost.In case of a DC fault event,DC-DC converters which have inherent DC fault isolation capability provide‘firewall’between the faulty and healthy zones such that the faulty DC network zone can be quickly isolated from the remaining of the MTDC network to allow the healthy DC network zones to remain operational.The validity of the proposed protection arrangement is confirmed using MATLAB/SIMULINK simulations.展开更多
A ZW-126/D2000-40 type single-break vacuum circuit breaker(VCB)with controlled switching technology is designed and produced in this paper.The results of type tests based on IEC and GB standards are presented.A 126 kV...A ZW-126/D2000-40 type single-break vacuum circuit breaker(VCB)with controlled switching technology is designed and produced in this paper.The results of type tests based on IEC and GB standards are presented.A 126 kV singlebreak vacuum interrupter(VI)with 3/4 coil axial magnetic field(AMF)contacts is used in the VCB,which can interrupt short currents of 40 kA.The external insulation of the VI is provided by SF_(6) at 0.1 MPa.In order to match the 126 kV single-break VI and controlled switching device,a long-stroke electro-magnetic force actuator(EMFA)with 16 kN closing holding force and 3.5 m/s average opening speed is designed.Moreover,a position tracking controlled switching device based on closed-loop control using the technology of a fuzzy control algorithm and pulse width modulation is applied to the controlled switching device.This device is applied to control the coil current of EMFA and the electromagnetic force,so as to control the EMFA to follow the ideal position curve.The type tests of 126 kV VCB are all passed according to the IEC62271-100 and GB1984-2014,including dielectric tests,basic short-circuit tests,shortline fault tests,out-of-phase tests,etc.The strong capacitive current breaking capacity and mechanical strength of the VCB are proved by the capacitive current switching test of class C2,electrical endurance test of class E2 and mechanical endurance test of class M2.The electromagnetic compatibility(EMC)tests are passed according to the IEC61000-4.The controlled switching test of capacitive current was successful according to IEC62271-302 and GB/T30846-2014,and the controlled switching accuracy is less than±0.5 ms.The test results show that the VCB has excellent performance,which has broad application prospects in special occasions at a 126 kV voltage level,such as a switching capacitor and no-load transformer,etc.展开更多
DC circuit breakers are major enabling components for multi-terminal HVDC systems.Their key design targets are operating speed and efficiency.This paper proposes a novel moving coil actuator using a compensation coil ...DC circuit breakers are major enabling components for multi-terminal HVDC systems.Their key design targets are operating speed and efficiency.This paper proposes a novel moving coil actuator using a compensation coil topology to operate mechanical circuit breakers.This topology aims to significantly improve the magnetic field saturation and reduce the system inductance,so that the operating speed is increased.Four possible connection methods for the compensation coils are proposed and analyzed using finite element modeling,ensuing simulation results are compared and discussed.The operating speed of the moving coil actuator with compensation coils is significantly improved compared with the original moving coil actuator.The moving coil actuator with compensation coils can open a distance of 5 mm within 2.8 ms and the peak efficiency is 47%.展开更多
The current interruption test based on an LC resonance circuit for hybrid DC circuit breakers(HVDC CBs)is widely employed to characterize the current interruption capability of CBs.In order to ensure a high-fidelity r...The current interruption test based on an LC resonance circuit for hybrid DC circuit breakers(HVDC CBs)is widely employed to characterize the current interruption capability of CBs.In order to ensure a high-fidelity replica of the fault current in a high voltage application,this paper first proposes an equivalent model of the test circuit,where not only parasitic resistances but also the threshold voltages and on-state resistances of various semiconductor devices are considered.Moreover,the analytical formula of the test current is derived by including the working principle of the HVDC CB.Secondly,the parameter extraction method,which combines finite element analysis and measurements by an impedance analyzer,is given in this paper.The extracted result implies that,in current interruption transients,equivalent resistances of 500 kV CB are as large as 535 mS,which have a significant influence on current waveforms.Thirdly,the 34 kV/25 kA current interruption test for the 500 kV CB is conducted.The measured results are proved to be consistent with the analytical results obtained from the proposed model,and the relative error is less than 2%.展开更多
基金This research was funded by Sichuan Science and Technology Program(2023YFSY0013).
文摘Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Backpropagation Neural Network(BPNN)is proposed to improve the operational safety of LVCB.Taking the 1.5kV/4000A/75kA LVCB as an example.According to the current operating characteristics of the energy storage motor,fault characteristics are extracted based on Empirical Wavelet Transform(EWT).Traditional BPNN has problems such as difficulty adjusting network weights and thresholds,being sensitive to initial weights,and quickly falling into local optimal solutions.The Sparrow Search Algorithm(SSA)with self-adjusting weight factors combined with bidirectional mutations is added to optimize the selection of BPNN hyperparameters.The results show that the ISSA-BPNN can accurately and quickly distinguish six conditions of motor voltage reduction:motor voltage increase,motor voltage decrease,energy storage spring stuck,transmission gear stuck,regular state and energy storage spring not locked.It is suitable for fault diagnosis and detection of the energy storage part of LVCB.
基金supported by the State Key Laboratory of Technology and Equipment for Defense against Power System Operational Risks(No.SGNR0000KJJS2302137)the National Natural Science Foundation of China(Grant No.62203248)the Natural Science Foundation of Shandong Province(Grant No.ZR2020ME194).
文摘High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faults.This study proposes a component separation method to detect multiple mechanical faults in circuit breakers that can achieve online real-time monitoring.First,a model and strategy are presented for obtaining mechanical voiceprint signals from circuit breakers.Subsequently,the component separation method was used to decompose the voiceprint signals of multiple faults into individual component signals.Based on this,the recognition of the features of a single-fault voiceprint signal can be achieved.Finally,multiple faults in high-voltage circuit breakers were identified through an experimental simulation and verification of the circuit breaker voiceprint signals collected from the substation site.The research results indicate that the proposed method exhibits excellent performance for multiple mechanical faults,such as spring structures and loose internal components of circuit breakers.In addition,it provides a reference method for the real-time online monitoring of high-voltage circuit breakers.
基金Ningbo Science and Technology Plan Project(Grant No.2023Z043)。
文摘This study investigates the breakdown voltage characteristics in sulfur hexafluoride(SF6)circuit breakers,employing a novel approach that integrates both experimental investigations and finite element simulations.Utilizing a sphere-sphere electrode configuration,we meticulously measured the relationship between breakdown voltage and electrode gap distances ranging from 1 cm to 4.5 cm.Subsequent simulations,conducted using COMSOL Multiphysics,mirrored the experimental setup to validate the model’s accuracy through a comparison of the breakdown voltage-electrode gap distance curves.The simulation results not only aligned closely with the experimental data but also allowed the extraction of detailed electric field strength,electric potential contours,and electric current flow curves at the breakdown voltage for gap distances extending from 1 to 4.5 cm.Extending the analysis,the study explored the electric field and potential distribution at a constant voltage of 72.5 kV for gap distances between 1 to 10 cm,identifying the maximum electric field strength.A comprehensive comparison of five different electrode configurations(sphere-sphere,sphere-rod,sphere-plane,rod-plane,rod-rod)at 72.5 kV and a gap distance of 1.84 cm underscored the significant influence of electrode geometry on the breakdown process.Moreover,the research contrasts the breakdown voltage in SF6 with that in air,emphasizing SF6’s superior insulating properties.This investigation not only elucidates the intricate dynamics of electrical breakdown in SF6 circuit breakers but also contributes valuable insights into the optimal electrode configurations and the potential for alternative insulating gases,steering future advancements in high-voltage circuit breaker technology.
基金Project (No. 043804411) supported by the Tianjin Natural ScienceFoundation, China
文摘This paper outlines the significance of enhancing the instantaneous protection reliability of low voltage circuit breakers and describes their main failure modes. The instantaneous failure mechanism of low voltage circuit breakers was analyzed so that measures to improve instantaneous protection reliability can be determined. Furthermore, the theory of the instantaneous characteristics calibration device for low voltage circuit breakers and the method of eliminating the non-periodic component of test current are given in detail. Finally, the test results are presented.
文摘Nozzle wall ablation caused by high temperature electric arcs is studied in the context of high voltage SF6 circuit breakers. The simplified ablation model used in litterature has been updated to take into account the unsteady state of ablation. Ablation rate and velocity are now calculated by a kinetic model using two layers of transition, between the bulk plasma and the ablating wall. The first layer (Knudsen layer), right by the wall, is a kinetic layer of a few mean-free path of thickness. The second layer is collision dominated and makes the transition between the kinetic layer and the plasma bulk. With this new coupled algorithm, it is now possible to calculate the temperature distribution inside the wall, as well as more accurate ablation rates.
基金supported in part by National Natural Science Foundation of China(Nos.51807148 and U1866202)in part by China Postdoctoral Science Foundation(No.2019M653628)。
文摘In order to get an insight into residual plasma radial motion during the post-arc stage,a twodimensional(2D)cylindrical particle-in-cell(PIC)model is developed.Firstly,influences of a virtual boundary condition on the residual plasma motion are studied.For purpose of validating this 2D cylindrical particle-in-cell model,a comparison between one-dimensional particle-in-cell model is also presented in this paper.Then a study about the influences of the rising rate of transient recovery voltage on the residual plasma radial motion is presented on the basis of the 2D PIC model.
文摘In October 1996, The Dhaka Stock Exchange (DSE) adopted trading halts for individual stocks, collectively known as "circuit breakers", to reduce the stock market volatility. This paper reviews the existing circuit breakers literature and developed five hypothesis--"Magnet Effect", "Cool off-Heating (C-H) Effect", "Information Hypothesis", "Volatility Spillover Hypothesis" and "Trading Interferences Hypothesis"--which could be tested empirically not only in the Dhaka Stock Exchange but any stock exchanges around the world. This paper also suggests most appropriate econometric models for empirical testing. GARCH for inter day data and Event Study methodology for intra day data. Moreover, to test the robustness non-parametric tests need to use along with parametric one. Considering the stock market bubbles in 1996, it has been found that it was optimal for the regulators to adopt this trading halt, but not for the market. It failed to protect the market. However, this might be the consequences of misconceptions about the purpose and effectiveness of circuit breakers. Despite many arguments contrary to this mechanism and absence of any conclusive empirical evidence for a fragile stock exchange like DSE, it may be useful sometimes to replace the "invisible hand of the marketplace" with the "visible hand of the market regulators".
文摘The DRM (dynamic contact resistance measurement) in high voltage circuit breakers is a manner of evaluating the internal ageing condition of the chamber. DRM is similar to static contact resistance measurement testing, but instead of measuring a single value when the breaker contacts are closed (static value), the ohmic resistance is measured at various contact positions, from the beginning of the contact opening until a complete separation of the contacts. The relationship between the contact resistances of the new circuit breaker and the ageing circuit breaker in operation provides subsidy for the evaluation of both the main and arcing contact conditions. This research aims to analyze the correlation between the various levels of degradation of the contacts and the configuration of the DRM curve. This work considers curve samples from new acceleration tests. breaker chamber contacts and different levels of degradation by
基金Project Supported by the Technique Project of China Southern Power Grid Co.,Ltd.(20142001342)
文摘To promote the accuracy and application of arcing time measurement for SF_6 circuit breaker in substation,five measurement methods are investigated by two cases experimentally. First,the test results of the five methods for a circuit breaker in different stages of wear and a circuit breaker with a component failure were presented. Then,the time error is analyzed by simulation.Finally,the advantage and disadvantage of these methods are discussed.
文摘The article describes design peculiarities of the novel compact vacuum circuit breaker with rated voltage 40.5 kV. The design incorporates several novel technical solutions: polycarbonate support insulation, mono-stable magnetic actuator, labyrinth pulling insulator, core-type flexible contact and new compact vacuum interrupter (VI). Phases are encapsulated into silicone rubber providing required creepage distance and excellent tracking resistance. These novelties along with extensive modeling of the mechanical and electrical fields followed by design optimization resulted in weight reduction of more than 50% compared with alternatives available in the market. And this is in spite of built in sensors measuring: phase currents, zero-sequence current, phase voltages.
文摘A numerical simulation model for 252 kV puffer circuit breaker is constructed, by using a proven commercial computational fluid dynamics (CFD) package, PHOENICS. The model takes into account the moving parts in the circuit breaker, turbulence enhanced momentum and energy transport, radiation transport. The arcing process in a SF6 puffer circuit breaker with two hollow contacts is simulated under different conditions, and the simulation results are verified with experimental results. Through simulation, the pressure, temperature and velocity in the arc quenching chamber can be obtained. The simulation model is also capable of predicting the influence of design parameters variations on breaker performance, and can thus help to reduce the number of short-circuit tests during the design stage.
文摘When interrupting short circuit fault by 40.5-kV vacuum circuit breakers, it is significant to eliminate multiple restrike phenomena, which occur frequently and result in high overvoltage and even interruption failure. A synthetic circuit that can supply a DC recovery voltage after current zero was used to study multiple restrike phenomena in switching. Some key factors including breaking current, clearance between open contacts, electrode structure and contact material, which may affect restrike characteristics, were studied. Under various clearances, the statistical probability of restrike was obtained. As a result, the best scope of clearance between open contacts was found. The performance of CuCr50/50 and CuCr75/25 material were compared. Two kinds of electrode structures, namely 1/2 coil structure and cup-shaped axial magnetic structure, were tested. After a high-current interruption, conditioning effoct was realized and the probability of restrike decreased.
基金Project (No. E2005000039) supported by the Natural Science Foun-dation of Hebei Province, China
文摘This paper analyzed the reliability and put forward the reliability index of overload protection for moulded case circuit breaker. The success rate was adopted as its reliability index of overload protection. Based on the reliability index and the reli- ability level, the reliability examination plan was analyzed and a test device for the overload protection of moulded case cir- cuit-breaker was developed. In the reliability test of overload protection, two power sources were used, which reduced the time of conversion and regulation between two different test currents in the overload protection test, which made the characteristic test more accurate. The test device was designed on the base of a Windows system, which made its operation simple and friendly.
基金the National Key R&D Program of China(Grant No.2018YFB0904600)the National Natural Science Foundation of China(Grant No.51777072)。
文摘High voltage DC grids are developing in more terminals and with larger transmission capacity,thus the re-quirements for DC circuit breakers(DCCB)will continue to rise.Conventional methods only use the faulty line DCCB to withstand the fault stress,and therefore this paper presents a coordination method of multiple DCCBs to protect the system.As many adjacent DCCBs are tripped to interrupt the fault current,the fault energy is shared,and the requirement for the faulty line DCCB is reduced.Moreover,the adjacent DCCBs are actively controlled to help system recovery.The primary protection,backup protection,and reclosing logic of multiple DCCBs are studied.Simulations confirm that the proposed control reduces the energy dissipation requirement of faulty line DCCB by approximately 30%-42%,the required current rating for IGBTs is reduced,and the system recovery time is also reduced by 20-40 ms.
文摘High voltage direct current(HVDC)systems are efficient solutions for the integration of large-scale renewable energy sources with the main power grids.The rapid development of the HVDC grid has resulted in a growing interest in DC circuit breakers(DCCBs).A fast and reliable circuit breaker is a necessary requirement in the development of large scale HVDC grids.This paper provides a comprehensive review and survey of the HVDC CBs and discusses potential research directions.Operational principles and the main features of various DCCBs are described and their merits and shortcomings are also highlighted.
基金This work was supported by the National High Technology Research and Development Program of China (Grant No.2007AA041803)Doctoral.Programs Foundation of Ministry of Education of China (Grant No.20090101110041)Program for New Century Excellent Talents in University
文摘High voltage circuit breakers are the most important protection and control apparatus in power system. As a core part of circuit breakers, the operating mechanisms have a trend to be hydraulic-style in high voltage power grid. Compared with other hydranlic systems, the hydraulic operating mechanisms have the characteristics of high hydraulic pressure, high speed, high power and long-term waiting etc., and it is because of the characteristics that the hydraulic operating mechanisms become dif- ficult to be developed and have been arousing significant study interest from more and more researchers as well as their promising applications. Therefore, it is significant to summarize the hydraulic operating mechanisms on their development, characteristics, and key technologies etc. In this review, the evolution process and recent studies of hydraulic operating mechanisms at home and abroad are viewed. The review then focuses on the characteristics and key technologies of hydraulic operating mechanisms, especially on time and velocity characteristics, high-speed cylinder cushioning, fast response and great flow rate control valve, temperature compensation, system monitoring and fault diagnosis, intelligent operation, energy storage module, etc. In the end, the future trends of this field are presented.
基金supported in part by China Electric Power Research Institute(CEPRI).
文摘This paper proposes a DC fault protection strategy for large multi-terminal HVDC(MTDC)network where MMC based DC-DC converter is configured at strategic locations to allow the large MTDC network to be operated interconnected but partitioned into islanded DC network zones following faults.Each DC network zone is protected using either AC circuit breakers coordinated with DC switches or slow mechanical type DC circuit breakers to minimize the capital cost.In case of a DC fault event,DC-DC converters which have inherent DC fault isolation capability provide‘firewall’between the faulty and healthy zones such that the faulty DC network zone can be quickly isolated from the remaining of the MTDC network to allow the healthy DC network zones to remain operational.The validity of the proposed protection arrangement is confirmed using MATLAB/SIMULINK simulations.
基金This work is supported by the National Natural Science Foundation of China(No.51877026 and No.51337001)the Science&Technology Project of SGCC(No.5229CG15003Q).
文摘A ZW-126/D2000-40 type single-break vacuum circuit breaker(VCB)with controlled switching technology is designed and produced in this paper.The results of type tests based on IEC and GB standards are presented.A 126 kV singlebreak vacuum interrupter(VI)with 3/4 coil axial magnetic field(AMF)contacts is used in the VCB,which can interrupt short currents of 40 kA.The external insulation of the VI is provided by SF_(6) at 0.1 MPa.In order to match the 126 kV single-break VI and controlled switching device,a long-stroke electro-magnetic force actuator(EMFA)with 16 kN closing holding force and 3.5 m/s average opening speed is designed.Moreover,a position tracking controlled switching device based on closed-loop control using the technology of a fuzzy control algorithm and pulse width modulation is applied to the controlled switching device.This device is applied to control the coil current of EMFA and the electromagnetic force,so as to control the EMFA to follow the ideal position curve.The type tests of 126 kV VCB are all passed according to the IEC62271-100 and GB1984-2014,including dielectric tests,basic short-circuit tests,shortline fault tests,out-of-phase tests,etc.The strong capacitive current breaking capacity and mechanical strength of the VCB are proved by the capacitive current switching test of class C2,electrical endurance test of class E2 and mechanical endurance test of class M2.The electromagnetic compatibility(EMC)tests are passed according to the IEC61000-4.The controlled switching test of capacitive current was successful according to IEC62271-302 and GB/T30846-2014,and the controlled switching accuracy is less than±0.5 ms.The test results show that the VCB has excellent performance,which has broad application prospects in special occasions at a 126 kV voltage level,such as a switching capacitor and no-load transformer,etc.
文摘DC circuit breakers are major enabling components for multi-terminal HVDC systems.Their key design targets are operating speed and efficiency.This paper proposes a novel moving coil actuator using a compensation coil topology to operate mechanical circuit breakers.This topology aims to significantly improve the magnetic field saturation and reduce the system inductance,so that the operating speed is increased.Four possible connection methods for the compensation coils are proposed and analyzed using finite element modeling,ensuing simulation results are compared and discussed.The operating speed of the moving coil actuator with compensation coils is significantly improved compared with the original moving coil actuator.The moving coil actuator with compensation coils can open a distance of 5 mm within 2.8 ms and the peak efficiency is 47%.
基金supported by Science and Technology Project of State Grid Corporation of China(No.520201190095).
文摘The current interruption test based on an LC resonance circuit for hybrid DC circuit breakers(HVDC CBs)is widely employed to characterize the current interruption capability of CBs.In order to ensure a high-fidelity replica of the fault current in a high voltage application,this paper first proposes an equivalent model of the test circuit,where not only parasitic resistances but also the threshold voltages and on-state resistances of various semiconductor devices are considered.Moreover,the analytical formula of the test current is derived by including the working principle of the HVDC CB.Secondly,the parameter extraction method,which combines finite element analysis and measurements by an impedance analyzer,is given in this paper.The extracted result implies that,in current interruption transients,equivalent resistances of 500 kV CB are as large as 535 mS,which have a significant influence on current waveforms.Thirdly,the 34 kV/25 kA current interruption test for the 500 kV CB is conducted.The measured results are proved to be consistent with the analytical results obtained from the proposed model,and the relative error is less than 2%.