Internal short circuit(ISCr) is one of the major obstacles to the improvement of the battery safety. The ISCr may lead to the battery thermal runaway and is hard to be detected in the early stage. In this work, a new ...Internal short circuit(ISCr) is one of the major obstacles to the improvement of the battery safety. The ISCr may lead to the battery thermal runaway and is hard to be detected in the early stage. In this work, a new ISCr detection method based on the symmetrical loop circuit topology(SLCT) is introduced. The SLCT ensures that every battery has the same priority in the circuit and every battery will contribute the same amount of short-circuit current to the ISCr once the ISCr happens. The ISCr battery could be identified by the combination of the ratio of the short-circuit currents and the sign of the short-circuit currents. The recursive least square method is adopted for the real-time application and the optimized ammeters allocation is derived from the mathematic deduction. The battery pack based on the individual DP(dual polarization) battery model is established to verify the ISCr detection method. The 1–1000 Ω s ISCr(the early stage ISCr) can be effectively detected within 1–125 s. The SLCT provides the possibility of new battery pack designs and new battery management methods. The proposed ISCr detection method shows excellent effectiveness and efficiency on the identification of the ISCr battery in the early stage.展开更多
The pulsed power supply(PPS)is one important component in the electromagnetic launch system.The inductive PPSs have attracted researchers’attentions with the major advantages of high energy storage density(over the c...The pulsed power supply(PPS)is one important component in the electromagnetic launch system.The inductive PPSs have attracted researchers’attentions with the major advantages of high energy storage density(over the capacitive PPSs)as well as simple structure and easy control(over the rotating mechanical PPSs).As for the inductive PPSs,the circuit topology of the basic module will directly determine the comprehensive performance of the whole system.From the perspectives of working principles,strengths,weaknesses,and comprehensive performance,this paper presents a historical and technical review of the major circuit topologies for the inductive PPSs.展开更多
The manufacturing of spiral groove structure of two-dimensional valve(2D valve)feedback mechanism has shortcomings of both high cost and time-consuming.This paper presents a novel configuration of rotary electro-mecha...The manufacturing of spiral groove structure of two-dimensional valve(2D valve)feedback mechanism has shortcomings of both high cost and time-consuming.This paper presents a novel configuration of rotary electro-mechanical converter with negative feedback mechanism(REMC-NFM)in order to replace the feedback mechanism of spiral groove and thus reduce cost of valve manufacturing.In order to rapidly and quantitative evaluate the driving and feedback performance of the REMC-NFM,an analytical model taking leakage flux,edge effect and permeability nonlinearity into account is formulated based on the equivalent magnetic circuit approach.Then the model is properly simplified in order to obtain the optimal pitch angle.FEM simulation is used to study the influence of crucial parameters on the performance of REMC-NFM.A prototype of REMC-NFM is designed and machined,and an exclusive experimental platform is built.The torque-angle characteristics,torque-displacement characteristics,and magnetic flux density in the working air gap with different excitation currents are measured.The experimental results are in good agreement with the analytical and FEM simulated results,which verifies the correctness of the analytical model.For torque-angle characteristics,the overall torque increases with both current and rotation angle,which reaches about 0.48 N·m with 1.5 A and 1.5°.While for torque-displacement characteristics,the overall torque increases with current yet decrease with armature displacement due to the negative feedback mechanism,which is about 0.16 N·m with 1.5 A and 0.8 mm.Besides,experimental results of conventional torque motor are compared with counterparts of REMC-NFM in order to validate the simplified model.The research indicates that the REMC-NFM can be potentially used as the electro-mechanical converter for 2D valves in civil servo areas.展开更多
We construct an electrical circuit to realize a modified Haldane lattice exhibiting the phenomenon of antichiral edge states. The circuit consists of a network of inductors and capacitors with interconnections reprodu...We construct an electrical circuit to realize a modified Haldane lattice exhibiting the phenomenon of antichiral edge states. The circuit consists of a network of inductors and capacitors with interconnections reproducing the effects of a magnetic vector potential. The next nearest neighbor hoppings are configured differently from the standard Haldane model, and as predicted by earlier theoretical studies, this gives rise to antichiral edge states that propagate in the same direction on opposite edges and coexist with bulk states at the same frequency. Using pickup coils to measure voltage distributions in the circuit, we experimentally verify the key features of the antichiral edge states, including their group velocities and ability to propagate consistently in a M?bius strip configuration.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. U1564205)the Ministry of Science and Technology of China (Grant No. 2016YFE0102200)funded by China Scholarship Council
文摘Internal short circuit(ISCr) is one of the major obstacles to the improvement of the battery safety. The ISCr may lead to the battery thermal runaway and is hard to be detected in the early stage. In this work, a new ISCr detection method based on the symmetrical loop circuit topology(SLCT) is introduced. The SLCT ensures that every battery has the same priority in the circuit and every battery will contribute the same amount of short-circuit current to the ISCr once the ISCr happens. The ISCr battery could be identified by the combination of the ratio of the short-circuit currents and the sign of the short-circuit currents. The recursive least square method is adopted for the real-time application and the optimized ammeters allocation is derived from the mathematic deduction. The battery pack based on the individual DP(dual polarization) battery model is established to verify the ISCr detection method. The 1–1000 Ω s ISCr(the early stage ISCr) can be effectively detected within 1–125 s. The SLCT provides the possibility of new battery pack designs and new battery management methods. The proposed ISCr detection method shows excellent effectiveness and efficiency on the identification of the ISCr battery in the early stage.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 50877039in part by the Tsinghua University Initiative Scientific Research Program under Grant No.20121087927(Corresponding author:Xinjie Yu).
文摘The pulsed power supply(PPS)is one important component in the electromagnetic launch system.The inductive PPSs have attracted researchers’attentions with the major advantages of high energy storage density(over the capacitive PPSs)as well as simple structure and easy control(over the rotating mechanical PPSs).As for the inductive PPSs,the circuit topology of the basic module will directly determine the comprehensive performance of the whole system.From the perspectives of working principles,strengths,weaknesses,and comprehensive performance,this paper presents a historical and technical review of the major circuit topologies for the inductive PPSs.
基金National Natural Science Foundation of China(Grant Nos.51975524,51405443)National Key Research and Development Program of China(Grant No.2019YFB2005200).
文摘The manufacturing of spiral groove structure of two-dimensional valve(2D valve)feedback mechanism has shortcomings of both high cost and time-consuming.This paper presents a novel configuration of rotary electro-mechanical converter with negative feedback mechanism(REMC-NFM)in order to replace the feedback mechanism of spiral groove and thus reduce cost of valve manufacturing.In order to rapidly and quantitative evaluate the driving and feedback performance of the REMC-NFM,an analytical model taking leakage flux,edge effect and permeability nonlinearity into account is formulated based on the equivalent magnetic circuit approach.Then the model is properly simplified in order to obtain the optimal pitch angle.FEM simulation is used to study the influence of crucial parameters on the performance of REMC-NFM.A prototype of REMC-NFM is designed and machined,and an exclusive experimental platform is built.The torque-angle characteristics,torque-displacement characteristics,and magnetic flux density in the working air gap with different excitation currents are measured.The experimental results are in good agreement with the analytical and FEM simulated results,which verifies the correctness of the analytical model.For torque-angle characteristics,the overall torque increases with both current and rotation angle,which reaches about 0.48 N·m with 1.5 A and 1.5°.While for torque-displacement characteristics,the overall torque increases with current yet decrease with armature displacement due to the negative feedback mechanism,which is about 0.16 N·m with 1.5 A and 0.8 mm.Besides,experimental results of conventional torque motor are compared with counterparts of REMC-NFM in order to validate the simplified model.The research indicates that the REMC-NFM can be potentially used as the electro-mechanical converter for 2D valves in civil servo areas.
基金supported by the National Natural Science Foundation of China(Grant Nos.11874274,and 12004425)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20170058,and BK20200630)+1 种基金a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)supported by the Singapore MOE Academic Research Fund Tier 3(Grant No.MOE2016-T3-1006)。
文摘We construct an electrical circuit to realize a modified Haldane lattice exhibiting the phenomenon of antichiral edge states. The circuit consists of a network of inductors and capacitors with interconnections reproducing the effects of a magnetic vector potential. The next nearest neighbor hoppings are configured differently from the standard Haldane model, and as predicted by earlier theoretical studies, this gives rise to antichiral edge states that propagate in the same direction on opposite edges and coexist with bulk states at the same frequency. Using pickup coils to measure voltage distributions in the circuit, we experimentally verify the key features of the antichiral edge states, including their group velocities and ability to propagate consistently in a M?bius strip configuration.