In this paper,we give the explicit expressions of level k (r 1,r 2,…,r k) circulant matrices of order n 1n 2…n k,and the explicit expressions for the eigenvalues,the determinants and the inverse matrices of the kind...In this paper,we give the explicit expressions of level k (r 1,r 2,…,r k) circulant matrices of order n 1n 2…n k,and the explicit expressions for the eigenvalues,the determinants and the inverse matrices of the kind level k (r 1,r 2,…,r k) circulant matrices are derived,and it is also proved that the sort of matrices are diagonalizable.展开更多
In this paper, we give the explicit expressions of level-k circulant matrices of type (n1,n2,…nk) and of order n1n2…nk,and the explicit expressions for the eigenvalues,the determinants and the inverse matrices of th...In this paper, we give the explicit expressions of level-k circulant matrices of type (n1,n2,…nk) and of order n1n2…nk,and the explicit expressions for the eigenvalues,the determinants and the inverse matrices of the kind level-k circulant matrices are derived,and it is also proved that the sort matrices are unitarily diagonalizable.展开更多
Two new design approaches for constructing Low-Density Parity-Check(LDPC) codes are proposed.One is used to design regular Quasi-Cyclic LDPC(QC-LDPC) codes with girth at least 8.The other is used to design irregular L...Two new design approaches for constructing Low-Density Parity-Check(LDPC) codes are proposed.One is used to design regular Quasi-Cyclic LDPC(QC-LDPC) codes with girth at least 8.The other is used to design irregular LDPC codes.Both of their parity-check matrices are composed of Circulant Permutation Matrices(CPMs).When iteratively decoded with the Sum-Product Algorithm(SPA),these proposed codes exhibit good performances over the AWGN channel.展开更多
A construction method based on the p-plane to design high-girth quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed. Firstly the good points in every line of the p-plane can be ascertained through filt...A construction method based on the p-plane to design high-girth quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed. Firstly the good points in every line of the p-plane can be ascertained through filtering the bad points, because the designed parity-check matrixes using these points have the short cycles in Tanner graph of codes. Then one of the best points from the residual good points of every line in the p-plane will be found, respectively. The optimal point is also singled out according to the bit error rate (BER) performance of the QC-LDPC codes at last. Explicit necessary and sufficient conditions for the QC-LDPC codes to have no short cycles are presented which are in favor of removing the bad points in the p-plane. Since preventing the short cycles also prevents the small stopping sets, the proposed construction method also leads to QC-LDPC codes with a higher stopping distance.展开更多
The existing constructions of quasi-cyclic low-density parity-check (QC-LDPC) codes do not consider the problems of small stopping sets and small girth together in the Tanner graph, while their existences will lead ...The existing constructions of quasi-cyclic low-density parity-check (QC-LDPC) codes do not consider the problems of small stopping sets and small girth together in the Tanner graph, while their existences will lead to the bit error rate (BER) performance of QC-LDPC codes being much poorer than that of randomly constructed LDPC codes even decoding failure. To solve the problem, some theorems of the specific chosen parity-check matrix of QC-LDPC codes without small stopping sets and small girth are proposed. A novel construction for QC-LDPC codes with long block lengths is presented by multiplying mmin or the multiple of mmin, which is the minimum order of the identity matrix for the chosen parity-check matrix. The simulation results show that the specific chosen parity-check matrix of QC-LDPC codes can effectively avoid specified stopping sets and small girth and exhibit excellent BER performance than random LDPC codes with the same longer codes length.展开更多
Abraham Lempel et al made a connection between linear codes and systems of bilinear forms over finite fields. In this correspondence, a new simple proof of a theorem in [1] is presented; in addition, the encoding proc...Abraham Lempel et al made a connection between linear codes and systems of bilinear forms over finite fields. In this correspondence, a new simple proof of a theorem in [1] is presented; in addition, the encoding process and the decoding procedure of RS codes are simplified via circulant matrices. Finally, the results show that the correspondence between bilinear forms and linear codes is not unique.展开更多
In this paper we study the necessary conditions for the masses of the nested regular polygon solutions of the planar 2N-body problem.We prove that the masses at the vertices of each regular polygon must be equal to ea...In this paper we study the necessary conditions for the masses of the nested regular polygon solutions of the planar 2N-body problem.We prove that the masses at the vertices of each regular polygon must be equal to each other.展开更多
文摘In this paper,we give the explicit expressions of level k (r 1,r 2,…,r k) circulant matrices of order n 1n 2…n k,and the explicit expressions for the eigenvalues,the determinants and the inverse matrices of the kind level k (r 1,r 2,…,r k) circulant matrices are derived,and it is also proved that the sort of matrices are diagonalizable.
文摘In this paper, we give the explicit expressions of level-k circulant matrices of type (n1,n2,…nk) and of order n1n2…nk,and the explicit expressions for the eigenvalues,the determinants and the inverse matrices of the kind level-k circulant matrices are derived,and it is also proved that the sort matrices are unitarily diagonalizable.
基金Supported by the National Natural Science Foundation of China(Nos.61271199,61172022)
文摘Two new design approaches for constructing Low-Density Parity-Check(LDPC) codes are proposed.One is used to design regular Quasi-Cyclic LDPC(QC-LDPC) codes with girth at least 8.The other is used to design irregular LDPC codes.Both of their parity-check matrices are composed of Circulant Permutation Matrices(CPMs).When iteratively decoded with the Sum-Product Algorithm(SPA),these proposed codes exhibit good performances over the AWGN channel.
基金supported by the National Natural Science Foundation of China (60572093)Specialized Research Fund for the Doctoral Program of Higher Education (20050004016)
文摘A construction method based on the p-plane to design high-girth quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed. Firstly the good points in every line of the p-plane can be ascertained through filtering the bad points, because the designed parity-check matrixes using these points have the short cycles in Tanner graph of codes. Then one of the best points from the residual good points of every line in the p-plane will be found, respectively. The optimal point is also singled out according to the bit error rate (BER) performance of the QC-LDPC codes at last. Explicit necessary and sufficient conditions for the QC-LDPC codes to have no short cycles are presented which are in favor of removing the bad points in the p-plane. Since preventing the short cycles also prevents the small stopping sets, the proposed construction method also leads to QC-LDPC codes with a higher stopping distance.
基金supported by the National Natural Science Foundation of China (60572093)Specialized Research Fund for the Doctoral Program of Higher Education (20050004016)
文摘The existing constructions of quasi-cyclic low-density parity-check (QC-LDPC) codes do not consider the problems of small stopping sets and small girth together in the Tanner graph, while their existences will lead to the bit error rate (BER) performance of QC-LDPC codes being much poorer than that of randomly constructed LDPC codes even decoding failure. To solve the problem, some theorems of the specific chosen parity-check matrix of QC-LDPC codes without small stopping sets and small girth are proposed. A novel construction for QC-LDPC codes with long block lengths is presented by multiplying mmin or the multiple of mmin, which is the minimum order of the identity matrix for the chosen parity-check matrix. The simulation results show that the specific chosen parity-check matrix of QC-LDPC codes can effectively avoid specified stopping sets and small girth and exhibit excellent BER performance than random LDPC codes with the same longer codes length.
基金She was with the Department of Mathematics in Wuhan University while writting this paper.
文摘Abraham Lempel et al made a connection between linear codes and systems of bilinear forms over finite fields. In this correspondence, a new simple proof of a theorem in [1] is presented; in addition, the encoding process and the decoding procedure of RS codes are simplified via circulant matrices. Finally, the results show that the correspondence between bilinear forms and linear codes is not unique.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 19871096), QSSTE and MOST.
文摘In this paper we study the necessary conditions for the masses of the nested regular polygon solutions of the planar 2N-body problem.We prove that the masses at the vertices of each regular polygon must be equal to each other.