A property(C) for permutation pairs is introduced. It is shown that if a pair{π_1, π_2} of permutations of(1,2,…,n) has property(C),then the D-type map Φ_(π_1,π_2) on n× n complex matrices constructed from ...A property(C) for permutation pairs is introduced. It is shown that if a pair{π_1, π_2} of permutations of(1,2,…,n) has property(C),then the D-type map Φ_(π_1,π_2) on n× n complex matrices constructed from {π_1,π_2} is positive. A necessary and sufficient condition is obtained for a pair {π_1,π_2} to have property(C),and an easily checked necessary and sufficient condition for the pairs of the form {π~p,π~q} to have property(C) is given, whereπ is the permutation defined by π(i) = i + 1 mod n and 1≤ p < q≤ n.展开更多
Dehghan and Hajarian, [4], investigated the matrix equations A^TXB+B^TX^TA = C and A^TXB + B^TXA = C providing inequalities for the determinant of the solutions of these equations. In the same paper, the authors pre...Dehghan and Hajarian, [4], investigated the matrix equations A^TXB+B^TX^TA = C and A^TXB + B^TXA = C providing inequalities for the determinant of the solutions of these equations. In the same paper, the authors presented a lower bound for the product of the eigenvalues of the solutions to these matrix equations. Inspired by their work, we give some generalizations of Dehghan and Hajarian results. Using the theory of the numerical ranges, we present an inequality involving the trace of C when A, B, X are normal matrices satisfying A^T B = BA^T.展开更多
非奇 H 矩阵在计算数学和矩阵理论的研究中非常重要,本文对该类矩阵给出了一个简捷判别条 件,根据这一判别条件,在一定条件下非奇 H 矩阵某些行的非对角元的模和可以任意大。另外 非奇 H 矩阵的较为实用的必要条件较少,本文...非奇 H 矩阵在计算数学和矩阵理论的研究中非常重要,本文对该类矩阵给出了一个简捷判别条 件,根据这一判别条件,在一定条件下非奇 H 矩阵某些行的非对角元的模和可以任意大。另外 非奇 H 矩阵的较为实用的必要条件较少,本文给出了一个非奇 H 矩阵的较为实用的必要条件。展开更多
基金partially supported by National Natural Science Foundation of China(11671294)
文摘A property(C) for permutation pairs is introduced. It is shown that if a pair{π_1, π_2} of permutations of(1,2,…,n) has property(C),then the D-type map Φ_(π_1,π_2) on n× n complex matrices constructed from {π_1,π_2} is positive. A necessary and sufficient condition is obtained for a pair {π_1,π_2} to have property(C),and an easily checked necessary and sufficient condition for the pairs of the form {π~p,π~q} to have property(C) is given, whereπ is the permutation defined by π(i) = i + 1 mod n and 1≤ p < q≤ n.
基金partially supported by FCT(Portugal)with national funds through Centro de Matemática da Universidade de Trás-os-Montes e Alto Douro(PEst-OE/MAT/UI4080/2014)
文摘Dehghan and Hajarian, [4], investigated the matrix equations A^TXB+B^TX^TA = C and A^TXB + B^TXA = C providing inequalities for the determinant of the solutions of these equations. In the same paper, the authors presented a lower bound for the product of the eigenvalues of the solutions to these matrix equations. Inspired by their work, we give some generalizations of Dehghan and Hajarian results. Using the theory of the numerical ranges, we present an inequality involving the trace of C when A, B, X are normal matrices satisfying A^T B = BA^T.