The effects of residual stress on the hydro-elastic vibration of circular diaphragm are theoretically investigated by using the added mass approach. The Kirchhoff theory of plates is used to model the elastic thin cir...The effects of residual stress on the hydro-elastic vibration of circular diaphragm are theoretically investigated by using the added mass approach. The Kirchhoff theory of plates is used to model the elastic thin circular diaphragm on an aperture of an infinite rigid wall and in contact with a fluid on one side. The fluid is assumed to be incompressible and inviscid and the velocity potential is used to describe its irrotational motion. A non-dimensional tension parameter is defined, and the effects of the tension parameter on the frequency parameters and mode shapes of the diaphragm in the air are presented. The Hankel transform is applied to solve the fluid-diaphragm coupled system;boundary conditions are expressed by integral equations. Finally, the effects of residual stress on the non-dimensional added virtual mass incremental (NAVMI) factors of the diaphragm contact with a fluid on one side are investigated. It is found that the effects of the residual stress cannot be neglected when the edges of the circular diaphragm are clamped. The effects of residual stress for NAVMI factors can be increases 11% when the non-dimensional tension parameter is 1000.展开更多
In this paper, first a circular diaphragm is modeled using the classical plate theory. An analytical solution based on differential transformation method (DTM) and Runge-Kutta method is employed for solving the gove...In this paper, first a circular diaphragm is modeled using the classical plate theory. An analytical solution based on differential transformation method (DTM) and Runge-Kutta method is employed for solving the governing differential equation for the first time. Then the influences of various parameters on central deflection of the diaphragm, stress distribution and capacitance of pressure sensor with a time-dependent pressure are examined. Several case studies are compared with simulations to confirm the proposed method. The analytical results compared with ABAQUS simulation show excellent agreement with the simulation results. This method is very promising for time saving in calculating micro-device characteristics.展开更多
The analytical and finite element analyses of circular resonator for Resonant Pressure Sensor are presented. The new idea of this paper is the Silicon circular diaphragm used as the sensing resonator for micro pressur...The analytical and finite element analyses of circular resonator for Resonant Pressure Sensor are presented. The new idea of this paper is the Silicon circular diaphragm used as the sensing resonator for micro pressure sensor. The thickness, radius and natural frequencies for the Si circular diaphragm are investigated. A system model is being developed to predict dynamic responses of the pressure sensor diaphragm and preliminary results are presented. The pressure range is 0-0.1Mpa. The resonant frequencies output of the homogenous circular diaphragm also realized by ANSYS software. The natural frequency of the resonator is about 63.418 kHz.展开更多
文摘The effects of residual stress on the hydro-elastic vibration of circular diaphragm are theoretically investigated by using the added mass approach. The Kirchhoff theory of plates is used to model the elastic thin circular diaphragm on an aperture of an infinite rigid wall and in contact with a fluid on one side. The fluid is assumed to be incompressible and inviscid and the velocity potential is used to describe its irrotational motion. A non-dimensional tension parameter is defined, and the effects of the tension parameter on the frequency parameters and mode shapes of the diaphragm in the air are presented. The Hankel transform is applied to solve the fluid-diaphragm coupled system;boundary conditions are expressed by integral equations. Finally, the effects of residual stress on the non-dimensional added virtual mass incremental (NAVMI) factors of the diaphragm contact with a fluid on one side are investigated. It is found that the effects of the residual stress cannot be neglected when the edges of the circular diaphragm are clamped. The effects of residual stress for NAVMI factors can be increases 11% when the non-dimensional tension parameter is 1000.
文摘In this paper, first a circular diaphragm is modeled using the classical plate theory. An analytical solution based on differential transformation method (DTM) and Runge-Kutta method is employed for solving the governing differential equation for the first time. Then the influences of various parameters on central deflection of the diaphragm, stress distribution and capacitance of pressure sensor with a time-dependent pressure are examined. Several case studies are compared with simulations to confirm the proposed method. The analytical results compared with ABAQUS simulation show excellent agreement with the simulation results. This method is very promising for time saving in calculating micro-device characteristics.
文摘The analytical and finite element analyses of circular resonator for Resonant Pressure Sensor are presented. The new idea of this paper is the Silicon circular diaphragm used as the sensing resonator for micro pressure sensor. The thickness, radius and natural frequencies for the Si circular diaphragm are investigated. A system model is being developed to predict dynamic responses of the pressure sensor diaphragm and preliminary results are presented. The pressure range is 0-0.1Mpa. The resonant frequencies output of the homogenous circular diaphragm also realized by ANSYS software. The natural frequency of the resonator is about 63.418 kHz.