This paper extends the Non-Circular MUltiple SIgnal Classification(MUSIC)(NC-MUSIC) method for the common array geometries including Uniform Circular Arrays(UCAs) and Uniform Rectangular Arrays(URAs),which enables the...This paper extends the Non-Circular MUltiple SIgnal Classification(MUSIC)(NC-MUSIC) method for the common array geometries including Uniform Circular Arrays(UCAs) and Uniform Rectangular Arrays(URAs),which enables the algorithm to estimate 2-D Direction Of Arrival(DOA).A comparison between UCAs and URAs of NC-MUSIC is made in this paper.The simulations show that the NC-MUSIC method doubles the maximum estimation number of standard MUSIC.Using non-circular signals,the performance of URAs is improved remarkably while the improvement of UCAs is not so significantly.Moreover,the influence of arrays structures on the NC-MUSIC method is discussed.展开更多
Since the global positioning system began to operate, it has become more and more close to people’s lives, and has been applied to various fields now. In order to track and decode GPS signals, GPS signals need to be ...Since the global positioning system began to operate, it has become more and more close to people’s lives, and has been applied to various fields now. In order to track and decode GPS signals, GPS signals need to be captured first. The necessary parameters of the captured GPS signal are immediately transmitted to the tracking process, and then the navigation message of the satellite can be obtained by tracking process. In this paper, the basic contents related to the signal structure of GPS system are briefly described. Then, the traditional GPS signal acquisition method based on time domain correlation method is introduced, and the GPS signal acquisition method based on FFT cyclic correlation method is discussed in this paper. By comparing the simulation results, two kinds of GPS signal acquisition methods are compared with the calculation time according to the method of controlling variables. For the two GPS signal acquisition methods, the variation of time delay error with SNR is simulated in this paper.展开更多
In array signal processing, 2-D spatial-spectrum estimation is required to determine DOA of multiple signals. The circular array of sensors is found to possess several nice properties for DOA estimation of wide-band s...In array signal processing, 2-D spatial-spectrum estimation is required to determine DOA of multiple signals. The circular array of sensors is found to possess several nice properties for DOA estimation of wide-band sources. C. U. Padmini, et al.(1994) had suggested that the frequency-direction ambiguity in azimuth estimation of wide-baud signals received by a uniform linear array (ULA) can be avoided by using a circular array, even without the use of any delay elements. In 2-D spatial-spectrum estimation for wide-band signals, the authors find that it is impossible to avoid the ambiguity in source frequency-elevation angle pairs using a circular array. In this paper, interpolated circular arrays are used to perform 2-D spatial-spectrum estimation for wide-band sources. In the estimation, a large aperture circular array (Υ】λmin/2) is found to possess superior resolution capability and robustness.展开更多
文摘This paper extends the Non-Circular MUltiple SIgnal Classification(MUSIC)(NC-MUSIC) method for the common array geometries including Uniform Circular Arrays(UCAs) and Uniform Rectangular Arrays(URAs),which enables the algorithm to estimate 2-D Direction Of Arrival(DOA).A comparison between UCAs and URAs of NC-MUSIC is made in this paper.The simulations show that the NC-MUSIC method doubles the maximum estimation number of standard MUSIC.Using non-circular signals,the performance of URAs is improved remarkably while the improvement of UCAs is not so significantly.Moreover,the influence of arrays structures on the NC-MUSIC method is discussed.
文摘Since the global positioning system began to operate, it has become more and more close to people’s lives, and has been applied to various fields now. In order to track and decode GPS signals, GPS signals need to be captured first. The necessary parameters of the captured GPS signal are immediately transmitted to the tracking process, and then the navigation message of the satellite can be obtained by tracking process. In this paper, the basic contents related to the signal structure of GPS system are briefly described. Then, the traditional GPS signal acquisition method based on time domain correlation method is introduced, and the GPS signal acquisition method based on FFT cyclic correlation method is discussed in this paper. By comparing the simulation results, two kinds of GPS signal acquisition methods are compared with the calculation time according to the method of controlling variables. For the two GPS signal acquisition methods, the variation of time delay error with SNR is simulated in this paper.
文摘In array signal processing, 2-D spatial-spectrum estimation is required to determine DOA of multiple signals. The circular array of sensors is found to possess several nice properties for DOA estimation of wide-band sources. C. U. Padmini, et al.(1994) had suggested that the frequency-direction ambiguity in azimuth estimation of wide-baud signals received by a uniform linear array (ULA) can be avoided by using a circular array, even without the use of any delay elements. In 2-D spatial-spectrum estimation for wide-band signals, the authors find that it is impossible to avoid the ambiguity in source frequency-elevation angle pairs using a circular array. In this paper, interpolated circular arrays are used to perform 2-D spatial-spectrum estimation for wide-band sources. In the estimation, a large aperture circular array (Υ】λmin/2) is found to possess superior resolution capability and robustness.