Introduction: The stability of orthodontic brackets throughout orthodontic treatment plays a critical role in the treatment’s effectiveness. The present in vitro study was designed to assess the impact of various die...Introduction: The stability of orthodontic brackets throughout orthodontic treatment plays a critical role in the treatment’s effectiveness. The present in vitro study was designed to assess the impact of various dietary components on the performance of orthodontic brackets. Methods: Metal orthodontic brackets were bonded to 66 extracted anterior teeth divided into groups based on the solution type: Milk, Gatorade, Cold Coffee, and a control group using water. Each group consisted of 20 teeth except for the control group, which included six teeth. The bracketed teeth were submerged in their respective solutions for 15 minutes three times daily at different intervals to mimic an in vivo environment and were stored in artificial saliva at room temperature (23?C). The specimens underwent artificial aging through 10,000 cycles of thermocycling (representing one clinical year) between 5?C and 55?C. Shade measurements were taken using a VITA Easy Shade device, capturing the classic shade and L*, a*, and b* values. Delta E values were calculated immediately post-bonding and after 7 days, 1 month, 1, and 2 clinical years. The shear bond strength of each bracket was measured using an ultra-tester machine. Results: After two clinical years, significant differences in ΔE color values were observed across all groups, with the most substantial change noted in teeth immersed in cold coffee. Brackets submerged in milk demonstrated lower shear bond strength than other solutions, whereas the control group exhibited the highest shear bond strength (P = 0.01). Conclusion: The study indicates that dietary components significantly influence tooth color stability and the shear bond strength of orthodontic brackets, underscoring the importance of considering these factors in orthodontic treatment planning.展开更多
With the increasing global demand for renewable energy,solar photovoltaic power generation technology has been widely applied in China and even globally.Especially in mountainous areas,complex terrain resources are cl...With the increasing global demand for renewable energy,solar photovoltaic power generation technology has been widely applied in China and even globally.Especially in mountainous areas,complex terrain resources are cleverly utilized in the construction of photovoltaic power stations,but this also brings severe challenges to the anti-corrosion of photovoltaic brackets.This paper focuses on the anti-corrosion technology of mountain photovoltaic brackets,and deeply explores the influence of natural factors such as mountain climate,sandstorms,and precipitation on the corrosion of photovoltaic brackets.The research results show that the key to improving anti-corrosion performance lies in the selection of bracket materials and optimization of coating processes.After comparing various anti-corrosion treatment methods such as hot-dip galvanizing,spray aluminum coating,and new anti-corrosion materials,it is found that nano coating technology exhibits excellent protective effects in corrosive environments.This study is of great significance for promoting the sustainable development of photovoltaic power generation,providing solid theoretical support and practical guidance for the anti-corrosion design of mountain photovoltaic power stations.展开更多
The Bracket Set(dougong)is an important aspect of traditional Chinese architecture known for its exquisite structure,complexity,and rich variations.This design element has been used since the Qin and Han Dynasties and...The Bracket Set(dougong)is an important aspect of traditional Chinese architecture known for its exquisite structure,complexity,and rich variations.This design element has been used since the Qin and Han Dynasties and is still prevalent today.It highlights hierarchy and spiritual connotations in the design of a building.This article explores the application of Bracket Set elements in modern architectural design.It analyzes the specific application strategies of this design element,highlighting its value in modern architecture.The goal is to provide modern architectural designers with multiple perspectives and strategies to fully utilize the advantages of Bracket Set elements in architectural design and enhance the artistic value of their work.展开更多
Titanium alloy has been applied in the field of aerospace manufacturing for its high specific strength and hardness.Nonetheless,these properties also cause general problems in the machining,such as processing ineffici...Titanium alloy has been applied in the field of aerospace manufacturing for its high specific strength and hardness.Nonetheless,these properties also cause general problems in the machining,such as processing inefficiency,serious wear,poor workpiece face quality,etc.Aiming at the above problems,this paper carried out a comparative experimental study on titanium alloy milling based on the CAMCand BEMC.The variation law of cutting force and wear morphology of the two tools were obtained,and the wear mechanism and the effect of wear on machining quality were analyzed.The conclusion is that in contrast with BEMC,under the action of cutting thickness thinning mechanism,the force of CAMC was less,and its fluctuation was more stable.The flank wear was uniform and near the cutting edge,and the wear rate was slower.In the early period,the wear mechanism of CAMC was mainly adhesion.Gradually,oxidative wear also occurred with milling.Furthermore,the surface residual height of CAMC was lower.There is no obvious peak and trough accompanied by fewer surface defects.展开更多
文摘Introduction: The stability of orthodontic brackets throughout orthodontic treatment plays a critical role in the treatment’s effectiveness. The present in vitro study was designed to assess the impact of various dietary components on the performance of orthodontic brackets. Methods: Metal orthodontic brackets were bonded to 66 extracted anterior teeth divided into groups based on the solution type: Milk, Gatorade, Cold Coffee, and a control group using water. Each group consisted of 20 teeth except for the control group, which included six teeth. The bracketed teeth were submerged in their respective solutions for 15 minutes three times daily at different intervals to mimic an in vivo environment and were stored in artificial saliva at room temperature (23?C). The specimens underwent artificial aging through 10,000 cycles of thermocycling (representing one clinical year) between 5?C and 55?C. Shade measurements were taken using a VITA Easy Shade device, capturing the classic shade and L*, a*, and b* values. Delta E values were calculated immediately post-bonding and after 7 days, 1 month, 1, and 2 clinical years. The shear bond strength of each bracket was measured using an ultra-tester machine. Results: After two clinical years, significant differences in ΔE color values were observed across all groups, with the most substantial change noted in teeth immersed in cold coffee. Brackets submerged in milk demonstrated lower shear bond strength than other solutions, whereas the control group exhibited the highest shear bond strength (P = 0.01). Conclusion: The study indicates that dietary components significantly influence tooth color stability and the shear bond strength of orthodontic brackets, underscoring the importance of considering these factors in orthodontic treatment planning.
文摘With the increasing global demand for renewable energy,solar photovoltaic power generation technology has been widely applied in China and even globally.Especially in mountainous areas,complex terrain resources are cleverly utilized in the construction of photovoltaic power stations,but this also brings severe challenges to the anti-corrosion of photovoltaic brackets.This paper focuses on the anti-corrosion technology of mountain photovoltaic brackets,and deeply explores the influence of natural factors such as mountain climate,sandstorms,and precipitation on the corrosion of photovoltaic brackets.The research results show that the key to improving anti-corrosion performance lies in the selection of bracket materials and optimization of coating processes.After comparing various anti-corrosion treatment methods such as hot-dip galvanizing,spray aluminum coating,and new anti-corrosion materials,it is found that nano coating technology exhibits excellent protective effects in corrosive environments.This study is of great significance for promoting the sustainable development of photovoltaic power generation,providing solid theoretical support and practical guidance for the anti-corrosion design of mountain photovoltaic power stations.
文摘The Bracket Set(dougong)is an important aspect of traditional Chinese architecture known for its exquisite structure,complexity,and rich variations.This design element has been used since the Qin and Han Dynasties and is still prevalent today.It highlights hierarchy and spiritual connotations in the design of a building.This article explores the application of Bracket Set elements in modern architectural design.It analyzes the specific application strategies of this design element,highlighting its value in modern architecture.The goal is to provide modern architectural designers with multiple perspectives and strategies to fully utilize the advantages of Bracket Set elements in architectural design and enhance the artistic value of their work.
基金Supported by National Natural Science Foundation of China(Grant No.51975168).
文摘Titanium alloy has been applied in the field of aerospace manufacturing for its high specific strength and hardness.Nonetheless,these properties also cause general problems in the machining,such as processing inefficiency,serious wear,poor workpiece face quality,etc.Aiming at the above problems,this paper carried out a comparative experimental study on titanium alloy milling based on the CAMCand BEMC.The variation law of cutting force and wear morphology of the two tools were obtained,and the wear mechanism and the effect of wear on machining quality were analyzed.The conclusion is that in contrast with BEMC,under the action of cutting thickness thinning mechanism,the force of CAMC was less,and its fluctuation was more stable.The flank wear was uniform and near the cutting edge,and the wear rate was slower.In the early period,the wear mechanism of CAMC was mainly adhesion.Gradually,oxidative wear also occurred with milling.Furthermore,the surface residual height of CAMC was lower.There is no obvious peak and trough accompanied by fewer surface defects.