This paper puts forward a novel magnetically insulated transmission line oscillator (MILO) for the first time which takes a modified HEM11 mode as its main interaction mode. The excitation of the oscillation mode is...This paper puts forward a novel magnetically insulated transmission line oscillator (MILO) for the first time which takes a modified HEM11 mode as its main interaction mode. The excitation of the oscillation mode is made possible by carefully adjusting the arrangements of each resonant cavity in a two-dimensional (2-D) slow wave structure. The high frequency characteristics are analyzed and a PIC simulation is carried out; the detailed results are discussed to get a better understanding of this new MILO. Employing an electron beam of about 441 kV and 39.7 kA, it finds that the modified HEM11 mode MILO generates a high power microwave output of about 1.47 GW at 1.45 GHz. The power conversion efficiency is about 8.4% and the generated microwave is in a TEll-like circularly polarized mode; its polarization direction is decided by the rotation direction of the SWS.展开更多
Diverse spatial mode bases can be exploited in mode-division multiplexing(MDM)to sustain the capacity growth in fiber-optic communications,such as linearly polarized(LP)modes,vector modes,LP orbital angular momentum(L...Diverse spatial mode bases can be exploited in mode-division multiplexing(MDM)to sustain the capacity growth in fiber-optic communications,such as linearly polarized(LP)modes,vector modes,LP orbital angular momentum(LP-OAM)modes,and circularly polarized OAM(CP-OAM)modes.Nevertheless,which kind of mode bases is more appropriate to be utilized in fiber still remains unclear.Here,we aim to find the superior mode basis in MDM fiber-optic communications via a system-level comparison in air-core fiber(ACF).We first investigate the walk-off effect of four spatial mode bases over 1-km ACF,where LP and LP-OAM modes show intrinsic mode walk-off,while it is negligible for vector and CP-OAM modes.We then study the mode coupling effect of degenerate vector and CP-OAM modes over 1-km ACF under fiber perturbations,where degenerate even and odd vector modes suffer severe mode cross talk,while negligible for highorder degenerate CP-OAM modes based on the laws of angular momentum conservation.Moreover,we comprehensively evaluate the system-level performance for data-carrying single-channel and two-channel MDM transmission with different spatial mode bases under various kinds of fiber perturbations(bending,twisting,pressing,winding,and out-of-plane moving).The obtained results indicate that the CP-OAM mode basis shows superiority compared to other mode bases in MDM fiber-optic communications without using multiple-input multiple-output digital signal processing.Our findings may pave the way for robust shortreach MDM optical interconnects for data centers and high-performance computing.展开更多
基金Project supported by the Science Foundation of the China Academy of Engineering Physics (Grant No 2008B0402046)
文摘This paper puts forward a novel magnetically insulated transmission line oscillator (MILO) for the first time which takes a modified HEM11 mode as its main interaction mode. The excitation of the oscillation mode is made possible by carefully adjusting the arrangements of each resonant cavity in a two-dimensional (2-D) slow wave structure. The high frequency characteristics are analyzed and a PIC simulation is carried out; the detailed results are discussed to get a better understanding of this new MILO. Employing an electron beam of about 441 kV and 39.7 kA, it finds that the modified HEM11 mode MILO generates a high power microwave output of about 1.47 GW at 1.45 GHz. The power conversion efficiency is about 8.4% and the generated microwave is in a TEll-like circularly polarized mode; its polarization direction is decided by the rotation direction of the SWS.
基金supported by the National Natural Science Foundation of China(Grant Nos.62125503 and 62261160388)the National Key R&D Program of China(Grant No.2019YFB2203604)+2 种基金the Key R&D Program of Hubei Province of China(Grant Nos.2020BAB001 and 2021BAA024)the Shenzhen Science and Technology Program(Grant No.JCYJ20200109114018750)the Innovation Project of Optics Valley Laboratory(Grant No.OVL2021BG004)。
文摘Diverse spatial mode bases can be exploited in mode-division multiplexing(MDM)to sustain the capacity growth in fiber-optic communications,such as linearly polarized(LP)modes,vector modes,LP orbital angular momentum(LP-OAM)modes,and circularly polarized OAM(CP-OAM)modes.Nevertheless,which kind of mode bases is more appropriate to be utilized in fiber still remains unclear.Here,we aim to find the superior mode basis in MDM fiber-optic communications via a system-level comparison in air-core fiber(ACF).We first investigate the walk-off effect of four spatial mode bases over 1-km ACF,where LP and LP-OAM modes show intrinsic mode walk-off,while it is negligible for vector and CP-OAM modes.We then study the mode coupling effect of degenerate vector and CP-OAM modes over 1-km ACF under fiber perturbations,where degenerate even and odd vector modes suffer severe mode cross talk,while negligible for highorder degenerate CP-OAM modes based on the laws of angular momentum conservation.Moreover,we comprehensively evaluate the system-level performance for data-carrying single-channel and two-channel MDM transmission with different spatial mode bases under various kinds of fiber perturbations(bending,twisting,pressing,winding,and out-of-plane moving).The obtained results indicate that the CP-OAM mode basis shows superiority compared to other mode bases in MDM fiber-optic communications without using multiple-input multiple-output digital signal processing.Our findings may pave the way for robust shortreach MDM optical interconnects for data centers and high-performance computing.