-Some numerical experiments have been developed to explain dynamically the mechanism of the formation of the wintertime circulation in the Northern Huanghai Sea and the Bohai Sea. From the results of the numerical exp...-Some numerical experiments have been developed to explain dynamically the mechanism of the formation of the wintertime circulation in the Northern Huanghai Sea and the Bohai Sea. From the results of the numerical experiments with Coriolis parameter having positive and negative values respectively, it is found that the current pattern characterized by flowing into the Bohai Sea in the northern part of the Bohai Straits and flowing out of the Bohai Sea in the southern part of the Bohai Straits is controlled basically by the bottom topography with 'the deepness on the northern side and shallowness on the southern side'in the Bohai Straits, and is not related to Coriolis parameter having positive and negative values. It also shows that the Huanghai Warm Current regarded as the inllow condition passing through the in-ports at the water boundary of the numerical experiments only influences the region near the water boundary and the eastern region of the Northern Huanghai Sea. In addition, the mechanism of the formation of several mesoscale eddies and the influence of the bottom topography on the wintertime circulation in the basin have been discussed.展开更多
To study the influence of back feeding particles on gas-solid flow in the riser, this paper investigated the flow asymmetry in the solid entrance region of a fluidized bed by particle concentration/velocity measuremen...To study the influence of back feeding particles on gas-solid flow in the riser, this paper investigated the flow asymmetry in the solid entrance region of a fluidized bed by particle concentration/velocity measurements in a cold square circulating fluidized beds (CFB). The pressure drop distribution along the riser and the saturation carrying capacity of gas for Geldart-B type particles were first analyzed. Under the condition of u0 = 4 m/s and Gs = 21 kg/(m^2 s), the back feeding particles were found to penetrate the lean gas-solid flow near the entrance (rear) wall before reaching the opposite (front) wall, thus leading to a relatively denser region near the front wall in the bottom bed. Higher solid circulation rate (u0 =4 m/s, Gs = 33 kg/(m^2 s)) resulted in a higher particle concentration in the riser. However the back feeding particles with higher momentum increased the asymmetry of the particle concentration/velocity profile in the solid entrance region. Lower air velocity (u0 =3.2 m/s) and Gs =21 kg/(m2 s), beyond the saturation carrying capacity of gas, induced an S-shaped axial solid distribution with a denser bottom zone. This limited the penetration of the back feeding particles and forced the flnidizing air to flow in the central region, thus leading to a higher solid holdup near the rear wall. Under the conditions of uo = 4 m/s and Gs = 21 kg/(m^2 s), addition of coarse particles (dp= 1145 μm) into the bed made the radial distribution of solids more symmetrical.展开更多
Firstly, the Earth's gravitational field from the past Challenging Minisatellite Payload (CHAMP) mission is determined using the energy conservation principle, the combined error model of the cumulative geoid heigh...Firstly, the Earth's gravitational field from the past Challenging Minisatellite Payload (CHAMP) mission is determined using the energy conservation principle, the combined error model of the cumulative geoid height influenced by three instrument errors from the current Gravity Recovery and Climate Experiment (GRACE) and future GRACE Follow-On missions is established based on the semi-analytical method, and the Earth's gravitational field from the executed Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission is recovered by the space-time-wise approach. Secondly, the cumulative geoid height errors are 1.727 × 10^-1 m, 1.839 × 10^-1 m and 9.025 × 10^ -2 m at degrees 70,120 and 250 from the implemented three-stage satellite gravity missions consisting of CHAMP, GRACE and GOCE, which preferably accord with those from the existing earth gravity field models involving EIGEN-CHAMP03S, EICEN-GRACE02S and GO_CONS GCF 2 DIR R1. The cumulative geoid height error is 6.847 × 10 ^-2 m at degree 250 from the future GRACE Follow-On mission. Finally, the complementarity among the four-stage satellite gravity missions including CHAMP, GRACE, GOCE and GRACE Follow-On is demonstrated contrastively.展开更多
On the basis of the salinity distribution of isopycnal(σ_0=27.2 kg/m^3) surface and in salinity minimum, the Antarctic Intermediate Water(AAIW) around South Australia can be classified into five types correspondi...On the basis of the salinity distribution of isopycnal(σ_0=27.2 kg/m^3) surface and in salinity minimum, the Antarctic Intermediate Water(AAIW) around South Australia can be classified into five types corresponding to five regions by using in situ CTD observations. Type 1 is the Tasman AAIW, which has consistent hydrographic properties in the South Coral Sea and the North Tasman Sea. Type 2 is the Southern Ocean(SO) AAIW, parallel to and extending from the Subantarctic Front with the freshest and coldest AAIW in the study area. Type 3 is a transition between Type 1 and Type 2. The AAIW transforms from fresh to saline with the latitude declining(equatorward). Type 4, the South Australia AAIW, has relatively uniform AAIW properties due to the semienclosed South Australia Basin. Type 5, the Southeast Indian AAIW, progressively becomes more saline through mixing with the subtropical Indian intermediate water from south to north. In addition to the above hydrographic analysis of AAIW, the newest trajectories of Argo(Array for real-time Geostrophic Oceanography) floats were used to constructed the intermediate(1 000 m water depth) current field, which show the major interocean circulation of AAIW in the study area. Finally, a refined schematic of intermediate circulation shows that several currents get together to complete the connection between the Pacific Ocean and the Indian Ocean. They include the South Equatorial Current and the East Australia Current in the Southwest Pacific Ocean, the Tasman Leakage and the Flinders Current in the South Australia Basin, and the extension of Flinders Current in the southeast Indian Ocean.展开更多
By means of simulation experiments with a two-dimensional zonal-mean model,a study is made of the influence of the western North-Pacific midlatitude sea-surface temperature(SST)anomalies on the circulation pattern and...By means of simulation experiments with a two-dimensional zonal-mean model,a study is made of the influence of the western North-Pacific midlatitude sea-surface temperature(SST)anomalies on the circulation pattern and wet-seasonal precipitation over the East-China Changjiang-Huaihe reaches and the North-China plain.The SST anomalies are divided into two types,one being“colder in the south and warmer in the north”and the other just opposite,depending on season.Results show that the occurrence of the anomalies is followed by considerable changes in the position of the subtropical high happening for 3-5 months to come.For instance,the spring“colder in the south and warmer in the north”anomalous type (i.e.,colder for 20—35°N,and warmer north of 35°N)leads to the intensification of the summer subtropical high,with the ridge line moved slightly northward,resulting in drought over Changjiang reaches for July-August and in excessive rainfall in the North-China plain,and vice versa.展开更多
文摘-Some numerical experiments have been developed to explain dynamically the mechanism of the formation of the wintertime circulation in the Northern Huanghai Sea and the Bohai Sea. From the results of the numerical experiments with Coriolis parameter having positive and negative values respectively, it is found that the current pattern characterized by flowing into the Bohai Sea in the northern part of the Bohai Straits and flowing out of the Bohai Sea in the southern part of the Bohai Straits is controlled basically by the bottom topography with 'the deepness on the northern side and shallowness on the southern side'in the Bohai Straits, and is not related to Coriolis parameter having positive and negative values. It also shows that the Huanghai Warm Current regarded as the inllow condition passing through the in-ports at the water boundary of the numerical experiments only influences the region near the water boundary and the eastern region of the Northern Huanghai Sea. In addition, the mechanism of the formation of several mesoscale eddies and the influence of the bottom topography on the wintertime circulation in the basin have been discussed.
基金supported financially by the Ministry of Science of China under the National Key Technology R&D Program of China (Contract No.:2006BAA03B01-07)
文摘To study the influence of back feeding particles on gas-solid flow in the riser, this paper investigated the flow asymmetry in the solid entrance region of a fluidized bed by particle concentration/velocity measurements in a cold square circulating fluidized beds (CFB). The pressure drop distribution along the riser and the saturation carrying capacity of gas for Geldart-B type particles were first analyzed. Under the condition of u0 = 4 m/s and Gs = 21 kg/(m^2 s), the back feeding particles were found to penetrate the lean gas-solid flow near the entrance (rear) wall before reaching the opposite (front) wall, thus leading to a relatively denser region near the front wall in the bottom bed. Higher solid circulation rate (u0 =4 m/s, Gs = 33 kg/(m^2 s)) resulted in a higher particle concentration in the riser. However the back feeding particles with higher momentum increased the asymmetry of the particle concentration/velocity profile in the solid entrance region. Lower air velocity (u0 =3.2 m/s) and Gs =21 kg/(m2 s), beyond the saturation carrying capacity of gas, induced an S-shaped axial solid distribution with a denser bottom zone. This limited the penetration of the back feeding particles and forced the flnidizing air to flow in the central region, thus leading to a higher solid holdup near the rear wall. Under the conditions of uo = 4 m/s and Gs = 21 kg/(m^2 s), addition of coarse particles (dp= 1145 μm) into the bed made the radial distribution of solids more symmetrical.
基金supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences for Distinguished Young Scholar(KZCX2-EW-QN114)the National Natural Science Foundation of China(41004006,41131067,11173049 and 41274041)+7 种基金the Merit-based Scientific Research Foundation of the State Ministry of Human Resources and Social Security of China for Returned Overseas Chinese Scholars(Z01101)the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China(11-01-02)the Open Research Fund Program of the Key Laboratory of Geo-Informatics of National Administration of Surveying,Mapping and Geoinformation of China(201322)the Open Research Fund Program of the State Key Laboratory of Geoinformation Engineering,China(SKLGIE2013-M-1-5)the Main Direction Program of Institute of Geodesy and Geophysics,Chinese Academy of Sciences(Y309451045)the Research Fund Program of State Key Laboratory of Geodesy and Earth's Dynamics,China(Y309491050)the Research Fund of the National Civilian Space Infrastructure Project(Y419341034)the Research Fund of the Lu Jiaxi Young Talent and the Youth Innovation Promotion Association of Chinese Academy of Science(Y305171017)
文摘Firstly, the Earth's gravitational field from the past Challenging Minisatellite Payload (CHAMP) mission is determined using the energy conservation principle, the combined error model of the cumulative geoid height influenced by three instrument errors from the current Gravity Recovery and Climate Experiment (GRACE) and future GRACE Follow-On missions is established based on the semi-analytical method, and the Earth's gravitational field from the executed Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission is recovered by the space-time-wise approach. Secondly, the cumulative geoid height errors are 1.727 × 10^-1 m, 1.839 × 10^-1 m and 9.025 × 10^ -2 m at degrees 70,120 and 250 from the implemented three-stage satellite gravity missions consisting of CHAMP, GRACE and GOCE, which preferably accord with those from the existing earth gravity field models involving EIGEN-CHAMP03S, EICEN-GRACE02S and GO_CONS GCF 2 DIR R1. The cumulative geoid height error is 6.847 × 10 ^-2 m at degree 250 from the future GRACE Follow-On mission. Finally, the complementarity among the four-stage satellite gravity missions including CHAMP, GRACE, GOCE and GRACE Follow-On is demonstrated contrastively.
基金The Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract Nos CHINARE-04-04 and CHINARE-04-01
文摘On the basis of the salinity distribution of isopycnal(σ_0=27.2 kg/m^3) surface and in salinity minimum, the Antarctic Intermediate Water(AAIW) around South Australia can be classified into five types corresponding to five regions by using in situ CTD observations. Type 1 is the Tasman AAIW, which has consistent hydrographic properties in the South Coral Sea and the North Tasman Sea. Type 2 is the Southern Ocean(SO) AAIW, parallel to and extending from the Subantarctic Front with the freshest and coldest AAIW in the study area. Type 3 is a transition between Type 1 and Type 2. The AAIW transforms from fresh to saline with the latitude declining(equatorward). Type 4, the South Australia AAIW, has relatively uniform AAIW properties due to the semienclosed South Australia Basin. Type 5, the Southeast Indian AAIW, progressively becomes more saline through mixing with the subtropical Indian intermediate water from south to north. In addition to the above hydrographic analysis of AAIW, the newest trajectories of Argo(Array for real-time Geostrophic Oceanography) floats were used to constructed the intermediate(1 000 m water depth) current field, which show the major interocean circulation of AAIW in the study area. Finally, a refined schematic of intermediate circulation shows that several currents get together to complete the connection between the Pacific Ocean and the Indian Ocean. They include the South Equatorial Current and the East Australia Current in the Southwest Pacific Ocean, the Tasman Leakage and the Flinders Current in the South Australia Basin, and the extension of Flinders Current in the southeast Indian Ocean.
文摘By means of simulation experiments with a two-dimensional zonal-mean model,a study is made of the influence of the western North-Pacific midlatitude sea-surface temperature(SST)anomalies on the circulation pattern and wet-seasonal precipitation over the East-China Changjiang-Huaihe reaches and the North-China plain.The SST anomalies are divided into two types,one being“colder in the south and warmer in the north”and the other just opposite,depending on season.Results show that the occurrence of the anomalies is followed by considerable changes in the position of the subtropical high happening for 3-5 months to come.For instance,the spring“colder in the south and warmer in the north”anomalous type (i.e.,colder for 20—35°N,and warmer north of 35°N)leads to the intensification of the summer subtropical high,with the ridge line moved slightly northward,resulting in drought over Changjiang reaches for July-August and in excessive rainfall in the North-China plain,and vice versa.