Battery energy storage stations(BESSs)pose sever-al challenges for both phasor-based differential protection and the newly-proposed time-domain differential protection.These challenges include low sensitivity and even...Battery energy storage stations(BESSs)pose sever-al challenges for both phasor-based differential protection and the newly-proposed time-domain differential protection.These challenges include low sensitivity and even rejection.Besides,the negative impact of various nonideal conditions,including current transformer(CT)saturation,errors,and outliers,on the security of differential protection remains an important problem.Motivated by the aforementioned issues,this study ac-counts for the trajectory distribution discrepancy on Cartesian plane under various conditions and proposes a time-domain dif-ferential protection method.In this paper,the trajectory formed by operating and restraining current samples is devel-oped.Subsequently,after considering different operating states,the fault severity levels,and nonideal conditions,the variances in trajectory distribution between internal and external faults are extensively analyzed.On this basis,the Cartesian plane is divided into operating,uncertainty,and restraining zones.Fur-ther,the operating and restraining trajectory indices are meticu-lously designed and a protection criterion based on these indi-ces is formed to accurately separate internal faults from other events,unaffected by CT saturation,errors,and outliers.The exceptional performance of the proposed protection method is extensively validated through PSCAD simulations and a hard-ware-in-the-loop testing platform.Regarding the dependability,sensitivity,and security,the proposed protection method outper-forms three state-of-the-art differential protection methods.展开更多
Metabolic rewiring underlies the effector functions of macrophages1-3,but the mechanisms involved remain incompletely defined.Here,using unbiased metabolomics and stable isotope-assisted tracing,we show that an inflam...Metabolic rewiring underlies the effector functions of macrophages1-3,but the mechanisms involved remain incompletely defined.Here,using unbiased metabolomics and stable isotope-assisted tracing,we show that an inflammatory aspartate argininosuccinate shunt is induced following lipopolysaccharide stimulation.The shunt,supported by increased argininosuccinate synthase(ASS1)expression,also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination.Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase(FH)further increases intracellular fumarate levels.展开更多
This paper presents a simplified elastic continuum method for calculating the restraint effect of isolation piles on tunneling-induced vertical ground displacement,which can consider not only the relative sliding of t...This paper presents a simplified elastic continuum method for calculating the restraint effect of isolation piles on tunneling-induced vertical ground displacement,which can consider not only the relative sliding of the pile‒soil interface but also the pile rowesoil interaction.The proposed method is verified by comparisons with existing theoretical methods,including the boundary element method and the elastic foundation method.The results reveal the restraining mechanism of the isolation piles on vertical ground displacements due to tunneling,i.e.the positive and negative restraint effects exerted by the isolation piles jointly drive the ground vertical displacement along the depth direction from the original tunneling-induced nonlinear variation situation to a relatively uniform situation.The results also indicate that the stiffness of the pile‒soil interface,including the pile shaft‒surrounding soil interface and pile tip-supporting soil interface,describes the strength of the pile‒soil interaction.The pile rows can confine the vertical ground displacement caused by the tunnel excavation to the inner side of the isolation piles and effectively prevent the vertical ground displacement from expanding further toward the outer side of the isolation piles.展开更多
Based on the background of structural protection and Disaster Reduction Engineering, the dynamic behaviour and failure mechanism of restrained beams in portal steel frames in localised fire are investigated via experi...Based on the background of structural protection and Disaster Reduction Engineering, the dynamic behaviour and failure mechanism of restrained beams in portal steel frames in localised fire are investigated via experimental measurement and numerical simulation techniques. Comprehensive parametric studies are carried out to discuss the influence of end connection types, temperature, impact velocity,impact mass and span-to-depth ratio(SDR) on the dynamic response of the beams. The characteristics of deformation, internal force and energy distribution about the restrained beams and its joints are investigated. A temperature dependent criterion for evaluating the frame joint performance is proposed to measure the degree of performance degradation and impact resistance of the joint. The dynamic displacement amplification factor in different temperature environments are proposed for the different beam end constraint types and SDRs. Results of the experimental and numerical analysis show that the welded connection(WC) of three typical joint types is the strongest, and the extended endplate connection(EEC) is the weakest in terms of the impact resistance performance. With regard to the failure mode of the joint, the failure positions of the WC and the welded-bolted connection are located in the inner web of the column. Meanwhile, the EEC is located in the connection position between the beam and the endplate. Three different internal force stages and two obvious critical temperature boundaries of the restrained beams emerge with the increase in temperature, and they have significant characteristics in terms of deformation trend, internal force transfer and energy distribution. During the impact, a phenomenon known as “compression arch action” develops into “catenary action” with the increase in deflection in the frame beam mechanism.展开更多
基金supported in part by the National Natural Science Foundation of China(No.52277i32)in part by the Fundamental Research Funds for the Central Universities(No.2024JCCXJD01).
文摘Battery energy storage stations(BESSs)pose sever-al challenges for both phasor-based differential protection and the newly-proposed time-domain differential protection.These challenges include low sensitivity and even rejection.Besides,the negative impact of various nonideal conditions,including current transformer(CT)saturation,errors,and outliers,on the security of differential protection remains an important problem.Motivated by the aforementioned issues,this study ac-counts for the trajectory distribution discrepancy on Cartesian plane under various conditions and proposes a time-domain dif-ferential protection method.In this paper,the trajectory formed by operating and restraining current samples is devel-oped.Subsequently,after considering different operating states,the fault severity levels,and nonideal conditions,the variances in trajectory distribution between internal and external faults are extensively analyzed.On this basis,the Cartesian plane is divided into operating,uncertainty,and restraining zones.Fur-ther,the operating and restraining trajectory indices are meticu-lously designed and a protection criterion based on these indi-ces is formed to accurately separate internal faults from other events,unaffected by CT saturation,errors,and outliers.The exceptional performance of the proposed protection method is extensively validated through PSCAD simulations and a hard-ware-in-the-loop testing platform.Regarding the dependability,sensitivity,and security,the proposed protection method outper-forms three state-of-the-art differential protection methods.
文摘Metabolic rewiring underlies the effector functions of macrophages1-3,but the mechanisms involved remain incompletely defined.Here,using unbiased metabolomics and stable isotope-assisted tracing,we show that an inflammatory aspartate argininosuccinate shunt is induced following lipopolysaccharide stimulation.The shunt,supported by increased argininosuccinate synthase(ASS1)expression,also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination.Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase(FH)further increases intracellular fumarate levels.
基金support by the National Natural Science Foundation of China(Grant Nos.52108376 and 51908371)China Postdoctoral Science Foundation(Grant No.2022T150436).
文摘This paper presents a simplified elastic continuum method for calculating the restraint effect of isolation piles on tunneling-induced vertical ground displacement,which can consider not only the relative sliding of the pile‒soil interface but also the pile rowesoil interaction.The proposed method is verified by comparisons with existing theoretical methods,including the boundary element method and the elastic foundation method.The results reveal the restraining mechanism of the isolation piles on vertical ground displacements due to tunneling,i.e.the positive and negative restraint effects exerted by the isolation piles jointly drive the ground vertical displacement along the depth direction from the original tunneling-induced nonlinear variation situation to a relatively uniform situation.The results also indicate that the stiffness of the pile‒soil interface,including the pile shaft‒surrounding soil interface and pile tip-supporting soil interface,describes the strength of the pile‒soil interaction.The pile rows can confine the vertical ground displacement caused by the tunnel excavation to the inner side of the isolation piles and effectively prevent the vertical ground displacement from expanding further toward the outer side of the isolation piles.
基金supported by the National natural Science Foundation of China [grant numbers 12172198, 11272189 and 52078283]Youth Innovation Technology Project of Higher School in Shandong Province [grant number 2019KJG015]。
文摘Based on the background of structural protection and Disaster Reduction Engineering, the dynamic behaviour and failure mechanism of restrained beams in portal steel frames in localised fire are investigated via experimental measurement and numerical simulation techniques. Comprehensive parametric studies are carried out to discuss the influence of end connection types, temperature, impact velocity,impact mass and span-to-depth ratio(SDR) on the dynamic response of the beams. The characteristics of deformation, internal force and energy distribution about the restrained beams and its joints are investigated. A temperature dependent criterion for evaluating the frame joint performance is proposed to measure the degree of performance degradation and impact resistance of the joint. The dynamic displacement amplification factor in different temperature environments are proposed for the different beam end constraint types and SDRs. Results of the experimental and numerical analysis show that the welded connection(WC) of three typical joint types is the strongest, and the extended endplate connection(EEC) is the weakest in terms of the impact resistance performance. With regard to the failure mode of the joint, the failure positions of the WC and the welded-bolted connection are located in the inner web of the column. Meanwhile, the EEC is located in the connection position between the beam and the endplate. Three different internal force stages and two obvious critical temperature boundaries of the restrained beams emerge with the increase in temperature, and they have significant characteristics in terms of deformation trend, internal force transfer and energy distribution. During the impact, a phenomenon known as “compression arch action” develops into “catenary action” with the increase in deflection in the frame beam mechanism.