In this study, discrete element method (DEM) was employed to simulate the movement of non-cohesive mono-dispersed particles in a V-blender along with particle-particle and particle-boundary interactions. To validate...In this study, discrete element method (DEM) was employed to simulate the movement of non-cohesive mono-dispersed particles in a V-blender along with particle-particle and particle-boundary interactions. To validate the model, DEM results were successfully compared to positron emission particle tracking (PEPT) data reported in literature. The validated model was then utilized to explore the effects of rotational speed and fill level on circulation intensity and axial dispersion coefficient of non-cohesive particles in the V-blender. The results showed that the circulation intensity increased with an increase in the rotational speed from 15 to 60 rpm. As the fill level increased from 20% to 46%, the circulation intensity decreased, reached its minimum value at a fill level of 34% for all rotational speeds, and did not change significantly at fill levels greater than 34%. The DEM results also revealed that the axial dispersion coefficient of particles in the V-blender was a linear function of the rotational speed. These trends were in good agreement with the experimentallv determined values reported bv previous researchers.展开更多
The article is devoted to the discussion of the possibilities of approbation of one of the probabilistic methods of verification of evaluation works-the minimax method or the method of establishing the minimum risk of...The article is devoted to the discussion of the possibilities of approbation of one of the probabilistic methods of verification of evaluation works-the minimax method or the method of establishing the minimum risk of making erroneous diagnoses of the instability of the planetary boundary layer of air.Within the framework of this study,the task of probabilistic forecasting of diagnostic parameters and their combinations,leading in their totality to the formation of an unstable state of the planetary boundary layer of the atmosphere,was carried out.It is this state that,as shown by previous studies,a priori contribution to the development of a number of weather phenomena dangerous for society(squalls,hail,heavy rains,etc.).The results of applying the minimax method made it possible to identify a number of parameters,such as the intensity of circulation,the activity of the Earth’s magnetosphere,and the components of the geostrophic wind velocity,the combination of which led to the development of instability.In the future,it is possible to further expand the number of diagnosed parameters to identify more sensitive elements.In this sense,the minimax method,the usefulness of which is shown in this study,can be considered as one of the preparatory steps for the subsequent more detailed method for forecasting individual hazardous weather phenomena.展开更多
基金The financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC)
文摘In this study, discrete element method (DEM) was employed to simulate the movement of non-cohesive mono-dispersed particles in a V-blender along with particle-particle and particle-boundary interactions. To validate the model, DEM results were successfully compared to positron emission particle tracking (PEPT) data reported in literature. The validated model was then utilized to explore the effects of rotational speed and fill level on circulation intensity and axial dispersion coefficient of non-cohesive particles in the V-blender. The results showed that the circulation intensity increased with an increase in the rotational speed from 15 to 60 rpm. As the fill level increased from 20% to 46%, the circulation intensity decreased, reached its minimum value at a fill level of 34% for all rotational speeds, and did not change significantly at fill levels greater than 34%. The DEM results also revealed that the axial dispersion coefficient of particles in the V-blender was a linear function of the rotational speed. These trends were in good agreement with the experimentallv determined values reported bv previous researchers.
文摘The article is devoted to the discussion of the possibilities of approbation of one of the probabilistic methods of verification of evaluation works-the minimax method or the method of establishing the minimum risk of making erroneous diagnoses of the instability of the planetary boundary layer of air.Within the framework of this study,the task of probabilistic forecasting of diagnostic parameters and their combinations,leading in their totality to the formation of an unstable state of the planetary boundary layer of the atmosphere,was carried out.It is this state that,as shown by previous studies,a priori contribution to the development of a number of weather phenomena dangerous for society(squalls,hail,heavy rains,etc.).The results of applying the minimax method made it possible to identify a number of parameters,such as the intensity of circulation,the activity of the Earth’s magnetosphere,and the components of the geostrophic wind velocity,the combination of which led to the development of instability.In the future,it is possible to further expand the number of diagnosed parameters to identify more sensitive elements.In this sense,the minimax method,the usefulness of which is shown in this study,can be considered as one of the preparatory steps for the subsequent more detailed method for forecasting individual hazardous weather phenomena.