Inlet distortion is one of the main factors for the degradation of aerodynamic performance and stability margin of the compressor in practical operation. Due to the change of the inlet shape and the large amount of in...Inlet distortion is one of the main factors for the degradation of aerodynamic performance and stability margin of the compressor in practical operation. Due to the change of the inlet shape and the large amount of inhalation of the body Boundary Layer, the ducted thrust fan of the Boundary Layer Ingestion (BLI) propulsion system inevitably works in the intake distortion condition. In this paper, the ducted thrust fan in a BLI propulsion system is taken as the research object. The influence of radial and circumferential total pressure distortion on the inlet section of the ducted thrust fan caused by boundary layer suction and inlet shape is studied by steady single channel and fullloop numerical simulation. The influence law of distortion intensity and distortion range of the two types of distortion patterns of the distortion map is analyzed emphatically. The results show that :(1) the greater the range and intensity of the radial total pressure distortion are, the more affected the performance of the ducted thrust fan is;(2) The aero-dynamic performance decline amplitude of the ducted thrust fan increases with the increase of the intensity of the circumferential total pressure distortion;The transmission law of the circumferential total pressure distortion intensity along the inlet and outlet of the fan is almost the same. Different working conditions have influence on the attenuation degree of the circumferential total pressure distortion in the ducted thrust fan, and the attenuation range of the circumferential total pressure distortion in the design working condition is the largest.展开更多
基金National Natural Science Foundation of China(No.51706183,No.51790512)。
文摘Inlet distortion is one of the main factors for the degradation of aerodynamic performance and stability margin of the compressor in practical operation. Due to the change of the inlet shape and the large amount of inhalation of the body Boundary Layer, the ducted thrust fan of the Boundary Layer Ingestion (BLI) propulsion system inevitably works in the intake distortion condition. In this paper, the ducted thrust fan in a BLI propulsion system is taken as the research object. The influence of radial and circumferential total pressure distortion on the inlet section of the ducted thrust fan caused by boundary layer suction and inlet shape is studied by steady single channel and fullloop numerical simulation. The influence law of distortion intensity and distortion range of the two types of distortion patterns of the distortion map is analyzed emphatically. The results show that :(1) the greater the range and intensity of the radial total pressure distortion are, the more affected the performance of the ducted thrust fan is;(2) The aero-dynamic performance decline amplitude of the ducted thrust fan increases with the increase of the intensity of the circumferential total pressure distortion;The transmission law of the circumferential total pressure distortion intensity along the inlet and outlet of the fan is almost the same. Different working conditions have influence on the attenuation degree of the circumferential total pressure distortion in the ducted thrust fan, and the attenuation range of the circumferential total pressure distortion in the design working condition is the largest.